Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Prostate cancer (PC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related deaths in male population worldwide. Since the growth and progression of PC highly depend on the androgen pathway, androgen deprivation therapy (ADT) is the mainstay of systemic treatment. Enzalutamide is a second-generation antiandrogen, which is widely used for the treatment of advanced and metastatic PC. However, treatment failure and disease progression, caused by the emergence of enzalutamide resistant phenotypes, remains an important clinical challenge. MicroRNAs (miRNAs) are key regulators of gene expression and have recently emerged as potential biomarkers for being stable and easily analysed in several biological fluids. Several miRNAs that exhibit dysregulated expression patterns in enzalutamide-resistant PC have recently been identified, including miRNAs that modulate critical signalling pathways and genes involved in PC growth, survival and in the acquisition of enzalutamide phenotype. The understanding of molecular mechanisms by which miRNAs promote the development of enzalutamide resistance can provide valuable insights into the complex interplay between miRNAs, gene regulation, and treatment response in PC. Moreover, these miRNAs could serve as valuable tools for monitoring treatment response and disease progression during enzalutamide administration. This review summarises the miRNAs associated with enzalutamide resistance in PC already described in the literature, focusing on their biological roles and on their potential as biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbcan.2023.189067 | DOI Listing |