Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The precise mechanical properties of many tissues are highly dependent on both the composition and arrangement of the nanofibrous extracellular matrix. It is well established that collagen nanofibers exhibit a crimped microstructure in several tissues such as blood vessel, tendon, and heart valve. This collagen fiber arrangement results in the classic non-linear 'J-shaped' stress strain curve characteristic of these tissues. Synthetic biomimetic fibrous materials with a crimped microstructure similar to natural collagen demonstrate similar mechanical properties to natural tissues. The following work describes a nanofabrication method based on electrospinning used to fabricate two component hybrid electrospun fibrous materials that mimic the microstructure and mechanical properties of vascular tissue. The properties of these samples can be precisely and predictably optimized by modifying fabrication parameters. Tubular grafts with biomimetic microstructure were constructed to demonstrate the potential of this fabrication method in vascular graft replacement applications. It was possible to closely match both the overall geometry and the compliance of specific blood vessels by optimizing graft microstructure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2023.106301DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
crimped microstructure
8
fibrous materials
8
microstructure
6
biomimetic crimped/aligned
4
crimped/aligned microstructure
4
microstructure optimize
4
optimize mechanics
4
mechanics fibrous
4
fibrous hybrid
4

Similar Publications

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).

View Article and Find Full Text PDF

The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.

View Article and Find Full Text PDF

Energy production from renewable resources remains a leading focus in sustainable power generation. Recently, bifacial photovoltaic (BPV) systems have gained global attention for their enhanced energy yield. In this study, seashell waste was repurposed as an alternative reflector material for BPV modules.

View Article and Find Full Text PDF

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF