98%
921
2 minutes
20
The cannabinoid receptor 1 (CB1R) plays a pivotal role in regulating various physiopathological processes, thus positioning itself as a promising and sought-after therapeutic target. However, the search for specific and effective CB1R ligands has been challenging, prompting the exploration of drug repurposing (DR) strategies. In this study, we present an innovative DR approach that combines computational screening and experimental validation to identify potential Food and Drug Administration (FDA)-approved compounds that can interact with the CB1R. Initially, a large-scale virtual screening was conducted using molecular docking simulations, where a library of FDA-approved drugs was screened against the CB1R's three-dimensional structures. This in silico analysis allowed us to prioritize compounds based on their binding affinity through two different filters. Subsequently, the shortlisted compounds were subjected to in vitro assays using cellular and biochemical models to validate their interaction with the CB1R and determine their functional impact. Our results reveal FDA-approved compounds that exhibit promising interactions with the CB1R. These findings open up exciting opportunities for DR in various disorders where CB1R signaling is implicated. In conclusion, our integrated computational and experimental approach demonstrates the feasibility of DR for discovering CB1R modulators from existing FDA-approved compounds. By leveraging the wealth of existing pharmacological data, this strategy accelerates the identification of potential therapeutics while reducing development costs and timelines. The findings from this study hold the potential to advance novel treatments for a range of CB1R -associated diseases, presenting a significant step forward in drug discovery research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747202 | PMC |
http://dx.doi.org/10.3390/ph16121678 | DOI Listing |
Elife
September 2025
Department of Neuroscience, Washington University School of Medicine, St Louis, United States.
Peripheral sensory neurons regenerate their axons after injury to regain function, but this ability declines with age. The mechanisms behind this decline are not fully understood. While excessive production of endothelin 1 (ET-1), a potent vasoconstrictor, is linked to many diseases that increase with age, the role of ET-1 and its receptors in axon regeneration is unknown.
View Article and Find Full Text PDFArch Pharm (Weinheim)
September 2025
Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
Nitazoxanide (NTZ), an FDA-approved drug, served as the framework for synthesizing 22 new broad-spectrum antimicrobial agents from 4-aminosalicylic acid via protection-deprotection, Staudinger reduction, Clauson-Kaas pyrrole synthesis, and nucleophilic substitution. These compounds were evaluated for antibacterial, antimycobacterial, and antitrypanosomal activities. Several compounds, particularly 10, 11, 13, and 22, surpassed the antibacterial activity of NTZ and its active metabolite tizoxanide (TIZ) against all tested pathogens, with MICs ranging from 1.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.
Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.
View Article and Find Full Text PDFACS Omega
September 2025
Centre of Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR 999078, China.
Tyrosinase, a copper-dependent oxidase, plays a critical role in melanin biosynthesis and is a target in skin-whitening cosmetics. Conventional inhibitors like arbutin and kojic acid are widely used but suffer from cytotoxicity, instability, and inconsistent efficacy, highlighting the need for safer, more effective alternatives. In this study, two ligand-based machine learning models were developed: one to predict the biological activity of compounds and the other to estimate specific pIC values.
View Article and Find Full Text PDFJ Mol Graph Model
August 2025
Department of Biotechnology, Delhi Technological University, Delhi, 110042, India. Electronic address:
Tuberculosis (TB) remains a major global health concern that affects millions and results in several casualties and these numbers are further increased because of the drug-resistant strains of Mycobacterium tuberculosis (M. tb). Current treatments, such as Isoniazid (INH), while effective, are increasingly compromised by resistance and associated side effects, emphasizing the urgent need for new therapeutic options.
View Article and Find Full Text PDF