Phase-Specific Damage Tolerance of a Eutectic High Entropy Alloy.

Entropy (Basel)

Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, USA.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phase-specific damage tolerance was investigated for the AlCoCrFeNi high entropy alloy with a lamellar microstructure of L1 and B2 phases. A microcantilever bending technique was utilized with notches milled in each of the two phases as well as at the phase boundary. The L1 phase exhibited superior bending strength, strain hardening, and plastic deformation, while the B2 phase showed limited damage tolerance during bending due to micro-crack formation. The dimensionalized stiffness (DS) of the L1 phase cantilevers were relatively constant, indicating strain hardening followed by increase in stiffness at the later stages and, therefore, indicating plastic failure. In contrast, the B2 phase cantilevers showed a continuous drop in stiffness, indicating crack propagation. Distinct differences in micro-scale deformation mechanisms were reflected in post-compression fractography, with L1-phase cantilevers showing typical characteristics of ductile failure, including the activation of multiple slip planes, shear lips at the notch edge, and tearing inside the notch versus quasi-cleavage fracture with cleavage facets and a river pattern on the fracture surface for the B2-phase cantilevers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10743261PMC
http://dx.doi.org/10.3390/e25121604DOI Listing

Publication Analysis

Top Keywords

damage tolerance
12
phase-specific damage
8
high entropy
8
entropy alloy
8
strain hardening
8
phase cantilevers
8
phase
5
tolerance eutectic
4
eutectic high
4
alloy phase-specific
4

Similar Publications

TabHLH86 regulates TaPEPC10 expression and mediates cadmium tolerance in wheat.

Plant Physiol Biochem

September 2025

School of Life Sciences, Guizhou Normal University, Guiyang, 550000, Guizhou Province, China. Electronic address:

In this study, we elucidated that wheat TaPEPC10, regulated by the transcription factor TabHLH86, reduces tolerance to cadmium (Cd) stress. To investigate the function and regulatory mechanism of phosphoenolpyruvate carboxylase (PEPC) genes in wheat under Cd stress, we employed bioinformatics approaches to identify 18 PEPC genes and predicted TaPEPC10 as a key responder based on its expression profile under Cd stress. We conducted phenotypic analyses and measured various physiological and biochemical indices in TaPEPC10 mutant wheat under Cd stress.

View Article and Find Full Text PDF

The RecBC complex protects single-stranded DNA gaps during lesion bypass.

Proc Natl Acad Sci U S A

September 2025

Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Inserm, Institut Paoli-Calmettes, Aix Marseille Université, Marseille 13009, France.

Following encounter with an unrepaired DNA lesion, replication is halted and can restart downstream of the lesion leading to the formation of a single-stranded DNA (ssDNA) gap. To complete replication, this ssDNA gap is filled in by one of the two lesion tolerance pathways: the error-prone Translesion Synthesis (TLS) or the error-free Homology Directed Gap Repair (HDGR). In the present work, we evidence a role for the RecBC complex distinct from its canonical function in homologous recombination at DNA double strand breaks.

View Article and Find Full Text PDF

Objective: Impaired ability to induce stepping after incomplete spinal cord injury (SCI) can limit the efficacy of locomotor training, often leaving patients wheelchair-bound. The cuneiform nucleus (CNF), a key mesencephalic locomotor control center, modulates the activity of spinal locomotor centers via the reticulospinal tract. Even with severe corticospinal damage, the widely distributed reticulospinal fibers frequently cross the lesion, and lumbosacral spinal locomotor centers remain responsive.

View Article and Find Full Text PDF

The bacterial DNA damage (SOS) response promotes DNA repair, DNA damage tolerance, and survival in the setting of genotoxic stress, including stress induced by antibiotics. In , translesion DNA synthesis can be fulfilled by Y-family DNA polymerases, including DNA polymerase IV (DinB). DinB features a more open active site and lacks proofreading ability, promoting error-prone replication.

View Article and Find Full Text PDF

Hydroxylation of HPPD facilitates its PUB11-mediated ubiquitination and degradation in response to oxidative stress in Arabidopsis.

Plant Commun

September 2025

State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China. Electronic address:

4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a critical role in plant photosynthesis, and is essential for enhancing tolerance to oxidative stress. However, the precise mechanisms through which plants regulate HPPD in response to oxidative stress remain largely unknown. Here, we report that the Arabidopsis thaliana HPPD (AtHPPD) undergoes an uncharacterized post-translational modification, namely phenylalanine hydroxylation, in response to excessive hydroxyl radicals (·OH), thereby mediating oxidative stress tolerance.

View Article and Find Full Text PDF