98%
921
2 minutes
20
Bone critical-size defects and non-union fractures have no intrinsic capacity for self-healing. In this context, the emergence of bone engineering has allowed the development of functional alternatives. The aim of this study was to evaluate the capacity of ASC spheroids in bone regeneration using a synergic strategy with 3D-printed scaffolds made from poly (lactic acid) (PLA) and nanostructured hydroxyapatite doped with carbonate ions (CHA) in a rat model of cranial critical-size defect. In summary, a set of results suggests that ASC spheroidal constructs promoted bone regeneration. In vitro results showed that ASC spheroids were able to spread and interact with the 3D-printed scaffold, synthesizing crucial growth factors and cytokines for bone regeneration, such as VEGF. Histological results after 3 and 6 months of implantation showed the formation of new bone tissue in the PLA/CHA scaffolds that were seeded with ASC spheroids. In conclusion, the presence of ASC spheroids in the PLA/CHA 3D-printed scaffolds seems to successfully promote bone formation, which can be crucial for a significant clinical improvement in critical bone defect regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744288 | PMC |
http://dx.doi.org/10.3390/jfb14120555 | DOI Listing |
Lab Chip
July 2025
Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA.
Approximately 70% of breast cancer (BC) diagnoses are estrogen receptor positive (ER) with ∼40% of ER BC patients presenting resistance to endocrine therapy (ET). Recent studies identify the tumor microenvironment (TME) as having a key role in endocrine resistance in which adipose-derived stem cells (ASCs) play an essential role in cancer progression. Prior studies have indicated that ASC characteristics such as age and BMI may play a role in cancer progression.
View Article and Find Full Text PDFBiomed Pharmacother
July 2025
Department of Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain; Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana, University of León-Universidad de León, 24071, Spain. Electronic address: vega.
Mesenchymal stromal cells (MSCs) have emerged as a promising tool in regenerative medicine, with recent focus shifting towards their secretome as a cell-free therapeutic approach. This study investigates the impact of various priming strategies on the immunomodulatory, anti-inflammatory, and regenerative potential of adipose-derived MSCs (ASCs) secretomes. We evaluated the effects of hypoxia, pro-inflammatory cytokines, and spheroid culture conditions on ASC secretome composition and functionality.
View Article and Find Full Text PDFStem Cell Res Ther
March 2025
Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
Background: Adipose-derived mesenchymal stem cells (ASCs) represent a valid therapeutic option for clinical application in several diseases, mostly due to the paracrine activity of their secretome, exerting pro-angiogenic, antinflammatory and immunosuppressive effects. Recently, 3D culturing models has been shown to significantly influence the intrinsic characteristics of these cells, their gene expression and the secretome's composition, thus affecting ASC paracrine effects and clinical potential. This study aims to investigate the feasibility of exploiting 3D culturing as a tool to improve ASC secretome therapeutic efficacy.
View Article and Find Full Text PDFStem Cell Res Ther
March 2025
Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan.
Background: Microenvironmental alterations induce significant genetic and epigenetic changes in stem cells. Mitochondria, essential for regenerative capabilities, provide the necessary energy for stem cell function. However, the specific roles of histone modifications and mitochondrial dynamics in human adipose-derived stem cells (ASCs) during morphological transformations remain poorly understood.
View Article and Find Full Text PDFMater Today Bio
December 2024
Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan.