98%
921
2 minutes
20
Objective: Lily is an essential ornamental flowering species worldwide. Drought stress is a major constraint affecting the morphology and physiology and lily leaves and flowers. Therefore, understanding the molecular mechanism underlying lily response to drought stress is important.
Method: Transcriptome and metabolome analysis were performed on Oriental Lily subjected to drought stress.
Result: Most transcription factors and metabolites yielded by the conjoint analysis displayed a downregulated expression pattern. Differential genes and metabolites mainly co-enriched in glycolic pathways related to sugars, such as galactose, and sucrose, glycolysis and gluconeogenesis, indicating that drought stress reduced the sugar metabolism level of Oriental Lily. Combined with transcriptome and metabolome data, nine pairs of differentially expressed metabolites and the genes ( < 0.05) were obtained. Interestingly, a gene named (encoding a type of alpha-D-glucose) cloned and its overexpression lines in was generated. Overexpression of gene elevated the susceptibility to drought stress possibly by suppressing the glucose level.
Conclusion: The enrichment of sugar-related pathways advocates the potential role of glucose metabolism in drought stress. Our study provides theoretical information related to the glucose-mediated drought response and would be fruitful in future lily breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734436 | PMC |
http://dx.doi.org/10.7717/peerj.16658 | DOI Listing |
Funct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFFront Plant Sci
August 2025
School of Biological Sciences, The University of Western Australia, Perth, Australia.
Agriculture is extremely vulnerable to climate change and crop production is severely hampered by climate extremes. Not only does it cost growers over US$170Bln in lost production, but it also has major implications for global food security. In this study, we argue that, under current climate scenarios, agriculture in the 21 century will become saline, severely limiting (or even making impossible) the use of traditional cereal crops for human caloric intake.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Laboratorio de Agrobiotecnología, Estación Experimental Agropecuaria (EEA) Balcarce-Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Unidad de Estudios Agropecuarios y Desarrollo de la Innovación Tecnológica Agropecuaria (UEDDINTA)-Consejo Nacional de
[This corrects the article DOI: 10.3389/fpls.2025.
View Article and Find Full Text PDFFront Plant Sci
August 2025
School of Biosciences, University of Sheffield, Sheffield, United Kingdom.
Drought has a major impact on crop yields. Silicon (Si) application has been proposed to improve drought resilience via several mechanisms including modifying the level of stomatal gas exchange. However, the impact of Si on transpiration and stomatal conductance varies between studies.
View Article and Find Full Text PDF3 Biotech
October 2025
ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India.
Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.
View Article and Find Full Text PDF