Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A majority of biomimetic membranes used for current biophysical studies rely on planar structures such as supported lipid bilayer (SLB) and self-assembled monolayers (SAMs). While they have facilitated key information collection, the lack of curvature makes these models less effective for the investigation of curvature-dependent protein binding. Here, we report the development and characterization of curved membrane mimics on a solid substrate with tunable curvature and ease in incorporation of cellular membrane components for the study of protein-membrane interactions. The curved membranes were generated with an underlayer lipid membrane composed of DGS-Ni-NTA and POPC lipids on the substrate, followed by the attachment of histidine-tagged cholera toxin (his-CT) as a capture layer. Lipid vesicles containing different compositions of gangliosides, including GA, GM, GT, and GQ, were anchored to the capture layer, providing fixation of the curved membranes with intact structures. Characterization of the curved membrane was accomplished with surface plasmon resonance (SPR), fluorescence recovery after photobleaching (FRAP), and nano-tracking analysis (NTA). Further optimization of the interface was achieved through principal component analysis (PCA) to understand the effect of ganglioside type, percentage, and vesicle dimensions on their interactions with proteins. In addition, Monte Carlo simulations were employed to predict the distribution of the gangliosides and interaction patterns with single point and multipoint binding models. This work provides a reliable approach to generate robust, component-tuning, and curved membranes for investigating protein interactions more pertinently than what a traditional planar membrane offers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c12922DOI Listing

Publication Analysis

Top Keywords

curved membrane
12
curved membranes
12
membrane mimics
8
protein-membrane interactions
8
surface plasmon
8
plasmon resonance
8
characterization curved
8
capture layer
8
curved
6
membrane
5

Similar Publications

Allosteric regulation of the Golgi-localized PPM1H phosphatase by Rab GTPases modulates LRRK2 substrate dephosphorylation in Parkinson's disease.

J Biol Chem

September 2025

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, San Francisco, CA, United States. Electronic address:

PPM1H phosphatase reverses Parkinson's disease-associated, Leucine Rich Repeat Kinase 2-mediated, Rab GTPase phosphorylation. We showed previously that PPM1H relies on an N-terminal amphipathic helix for Golgi membrane localization and this helix enables PPM1H to associate with liposomes in vitro; binding to highly curved liposomes activates PPM1H's phosphatase activity. We show here that PPM1H also contains an allosteric binding site for its non-phosphorylated reaction products, Rab8A and Rab10.

View Article and Find Full Text PDF

Clathrin-mediated endocytosis (CME) is an important internalization route for macromolecules, lipids, and membrane receptors in eukaryotic cells. During CME, the plasma membrane invaginates and pinches off forming a clathrin coated vesicle. We previously identified heterogeneity in this process with clathrin coated vesicles forming though multiple routes including simultaneous clathrin accumulation and membrane invagination (constant curvature; CCM) as well as membrane bending after accumulation of flat clathrin (flat to curved; FTC).

View Article and Find Full Text PDF

Wearable sweat sensors are emerging as transformative noninvasive platforms for real-time physiological monitoring. However, persistent challenges regarding dynamic skin conformability, reliable adhesion, efficient sweat uptake/transport, and biosafety impede clinical translation. Herein, we developed hydrophilic-adhesive polyvinylidene fluoride (PVDF) nanofiber membranes via a bioinspired modification strategy for sweat sensor construction.

View Article and Find Full Text PDF

Conjugated oligoelectrolytes (COEs) constitute a powerful toolbox for detecting and modulating cell membrane properties. The versatility in their molecular structural design enables fine-tuning of their membrane intercalating behaviors, ranging from membrane disruption for antimicrobial applications to membrane stabilization for cell labeling and biosensing. However, a detailed description of the intercalation mechanism is absent, despite efforts to understand the impact of charge density and hydrophobic core length on the membrane intercalation efficiency of COEs.

View Article and Find Full Text PDF

Investigating Curvature Sensing by the Nt17 Domain of Huntingtin Protein.

ACS Chem Neurosci

September 2025

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States.

Nt17, the N-terminal domain of the huntingtin protein (htt), has garnered significant attention for its role in htt's membrane binding and aggregation processes. Previous studies have identified a nuclear export sequence within the Nt17 domain and demonstrated its localization at various cellular organelles. Recent evidence suggests that, like other amphipathic helices, Nt17 can sense and preferentially bind to curved membranes.

View Article and Find Full Text PDF