98%
921
2 minutes
20
Aim: To assess the effectiveness of Bacillus subtilis strain LN8B as a biocollector for recovering pyrite (Py) and chalcopyrite (CPy) in both seawater (Sw) and deionized water (Dw), and to explore the underlying adhesion mechanism in these bioflotation experiments.
Materials And Methods: The bioflotation test utilized B. subtilis strain LN8B as the biocollector through microflotation experiments. Additionally, frother methyl isobutyl carbinol (MIBC) and conventional collector potassium amyl xanthate (PAX) were introduced in some experiments. The zeta potential (ZP) and Fourier-transform infrared spectroscopy (FTIR) was employed to explore the adhesion mechanism of Py and CPy interacting with the biocollector in Sw and Dw. The adaptability of the B. subtilis strain to different water types and salinities was assessed through growth curves measuring optical density. Finally, antibiotic susceptibility tests were conducted to evaluate potential risks of the biocollector.
Results: Superior outcomes were observed in Sw where Py and CPy recovery was ∼39.3% ± 7.7% and 41.1% ± 5.8%, respectively, without microorganisms' presence. However, B. subtilis LN8B potentiate Py and CPy recovery, reaching 72.8% ± 4.9% and 84.6% ± 1.5%, respectively. When MIBC was added, only the Py recovery was improved (89.4% ± 3.6%), depicting an adverse effect for CPy (81.8% ± 1.1%). ZP measurements indicated increased mineral surface hydrophobicity when Py and CPy interacted with the biocollector in both Sw and Dw. FTIR revealed the presence of protein-related amide peaks, highlighting the hydrophobic nature of the bacterium. The adaptability of this strain to diverse water types and salinities was assessed, demonstrating remarkable growth versatility. Antibiotic susceptibility tests indicated that B. subtilis LN8B was susceptible to 23 of the 25 antibiotics examined, suggesting it poses minimal environmental risks.
Conclusions: The study substantiates the biotechnological promise of B. subtilis strain LN8B as an efficient sulfide collector for promoting cleaner mineral production. This effectiveness is attributed to its ability to induce mineral surface hydrophobicity, a result of the distinct characteristics of proteins within its cell wall.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jambio/lxad313 | DOI Listing |
RSC Adv
September 2025
Department of Chemistry, Central University of Karnataka Kalaburagi-585 367 Karnataka India.
This research work details the use of a molecular hybridization technique to create a library of four series of hydrazineyl-linked imidazo[1,2-]pyrimidine-thiazole derivatives. The structure of one of the final products, K2, was validated using single-crystal X-ray diffraction. Twenty-six novel hybrid molecules (K1-K26) were synthesized and tested for activity against the H37Rv strain.
View Article and Find Full Text PDFJ Basic Microbiol
September 2025
Department of Plant Pathology, CCS Haryana Agricultural University, Hisar, Haryana, India.
Cereal cyst nematode (Heterodera avenae) significantly hampers barley production by causing stunted growth and yield losses. This study explored the biocontrol potential of multitrait root endophytic bacteria isolated from H. avenae-infested barley roots to suppress nematode infestation.
View Article and Find Full Text PDFJ Bacteriol
September 2025
Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
Essential genes are interesting in their own right and as potential antibiotic targets. To date, only one report has identified essential genes on a genome-wide scale in , a problematic pathogen for which treatment options are limited. That foundational study used large-scale transposon mutagenesis to identify 404 protein-encoding genes as likely to be essential for vegetative growth of the epidemic strain R20291.
View Article and Find Full Text PDFFront Microbiol
August 2025
Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
Essential oils (EOs) hold significant potential as antimicrobials in food, due to their high concentration of active phenolic compounds. These compounds can target bacterial cells through various mechanisms, such as membrane disruption, inhibition, and interference in virulence factors, affecting microorganisms at a genomic level. and are key foodborne bacteria that could be managed using these natural preservatives.
View Article and Find Full Text PDFFront Microbiol
August 2025
Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China.
As the world's largest producer of kiwifruit, China faces significant yield and quality losses due to the widespread occurrence of kiwifruit root rot. To explore alternative biological control strategies for kiwifruit root rot, this study isolated 11 fungal isolates from diseased kiwifruit roots and identified as the primary pathogen. Additionally, a biocontrol strain, C3, was isolated from the rhizosphere of healthy kiwifruit and shown to significantly inhibit pathogen growth.
View Article and Find Full Text PDF