How long have we been mistaken? Multi-tools shedding light into the systematics of the widespread deep-water genus Madrepora Linnaeus, 1758 (Scleractinia).

Mol Phylogenet Evol

Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazi

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep-water coral reefs are found worldwide and harbor biodiversity levels that are comparable to their shallow-water counterparts. However, the genetic diversity and population structure of deep-water species remain poorly explored, and historical taxonomical issues still need to be resolved. Here we used microsatellite markers as well as ultraconserved elements (UCE) and exons to shed light on the population structure, genetic diversity, and phylogenetic position of the genus Madrepora, which contains M. oculata, one of the most widespread scleractinian species. Population structure of 107 samples from three Southwestern Atlantic sedimentary basins revealed the occurrence of a cryptic species, herein named M. piresae sp. nov. (authored by Kitahara, Capel and Zilberberg), which can be found in sympatry with M. oculata. Phylogeny reconstructions based on 134 UCEs and exon regions corroborated the population genetic data, with the recovery of two well-supported groups, and reinforced the polyphyly of the family Oculinidae. In order to better accommodate the genus Madrepora, while reducing taxonomical confusion associated with the name Madreporidae, we propose the monogeneric family Bathyporidae fam. nov. (authored by Kitahara, Capel, Zilberberg and Cairns). Our findings advance the knowledge on the widespread deep-water genus Madrepora, resolve a long-standing question regarding the phylogenetic position of the genus, and highlight the need of a worldwide review of the genus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2023.107994DOI Listing

Publication Analysis

Top Keywords

genus madrepora
16
population structure
12
widespread deep-water
8
deep-water genus
8
genetic diversity
8
phylogenetic position
8
position genus
8
nov authored
8
authored kitahara
8
kitahara capel
8

Similar Publications

Unravelling the relationships among Linnaeus, 1758, Lamark, 1816 and Ehrenberg, 1834 (Cnidaria: Anthozoa: Scleractinia).

Invertebr Syst

April 2024

Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), E-28006 Madrid, Spain.

Despite the widespread use of integrative taxonomic approaches, many scleractinian coral genera and species remain grouped in polyphyletic families, classified as incertae sedis or simply understudied. Oculinidae Gray, 1847 represents a family for which many taxonomic questions remain unresolved, particularly those related to some of the current genera, such as Oculina Lamark, 1816 or recently removed genera, including Cladocora Ehrenberg, 1834 and Madrepora Linnaeus, 1758. Cladocora is currently assigned to the family Cladocoridae Milne Edwards & Haime, 1857 and a new family, Bathyporidae Kitahara, Capel, Zilberberg & Cairns, 2024, was recently raised to accommodate Madrepora .

View Article and Find Full Text PDF

How long have we been mistaken? Multi-tools shedding light into the systematics of the widespread deep-water genus Madrepora Linnaeus, 1758 (Scleractinia).

Mol Phylogenet Evol

February 2024

Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazi

Deep-water coral reefs are found worldwide and harbor biodiversity levels that are comparable to their shallow-water counterparts. However, the genetic diversity and population structure of deep-water species remain poorly explored, and historical taxonomical issues still need to be resolved. Here we used microsatellite markers as well as ultraconserved elements (UCE) and exons to shed light on the population structure, genetic diversity, and phylogenetic position of the genus Madrepora, which contains M.

View Article and Find Full Text PDF

A health survey of the reef forming scleractinian cold-water corals Lophelia pertusa and Madrepora oculata in a remote submarine canyon on the European continental margin, NE Atlantic.

J Invertebr Pathol

July 2022

School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland; Irish Centre for Research in Applied Geosciences / Marine & Renewable Energy Institute (MaREI), University College, Cork.

Monitoring of cold-water corals (CWCs) for pathogens and diseases is limited due to the environment, protected nature of the corals and their habitat and as well as the challenging and sampling effort required. It is recognised that environmental factors such as temperature and pH can expedite the ability of pathogens to cause diseases in cold-water corals therefore the characterisation of pathogen diversity, prevalence and associated pathologies is essential. The present study combined histology and polymerase chain reaction (PCR) diagnostic techniques to screen for two significant pathogen groups (bacteria of the genus Vibrio and the protozoan Haplosporidia) in the dominant NE Atlantic deep-water framework corals Lophelia pertusa (13 colonies) and Madrepora oculata (2 colonies) at three sampling locations (canyon head, south branch and the flank) in the Porcupine Bank Canyon (PBC), NE Atlantic.

View Article and Find Full Text PDF

Environmental conditions influence species composition, including the microbial communities that associate with benthic organisms such as corals. In this study we identified and compared bacteria that associate with three common deep-water corals, Lophelia pertusa, Madrepora oculata and Paragorgia arborea, from a reef habitat on the mid-Norwegian shelf. The 16S rRNA gene amplicon sequencing data obtained revealed that >50% of sequences were represented by only five operational taxonomic units.

View Article and Find Full Text PDF

The Effect of Captivity on the Dynamics of Active Bacterial Communities Differs Between Two Deep-Sea Coral Species.

Front Microbiol

October 2018

Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France.

Microbes play a crucial role in sustaining the coral holobiont's functions and in particular under the pressure of environmental stressors. The effect of a changing environment on coral health is now a major branch of research that relies heavily on aquarium experiments. However, the effect of captivity on the coral microbiome remains poorly known.

View Article and Find Full Text PDF