A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Computational Risk Assessment of Persistence, Bioaccumulation, and Toxicity of Novel Flame-Retardant Chemicals. | LitMetric

Computational Risk Assessment of Persistence, Bioaccumulation, and Toxicity of Novel Flame-Retardant Chemicals.

J Phys Chem A

Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Novel brominated flame retardants (NBFRs) have emerged as chemicals of environmental concern, as they have been widely used as an alternative to polybrominated diphenyl ethers (PBDEs). Considering the similar structural features of NBFRs and PBDEs necessitates a comprehensive investigation to understand the physicochemical relationships of these compounds and their ability to alter biological functions. In this study, we investigated the persistent nature of NBFRs in terms of thyroid-disrupting potential by understanding the structure-stability aspects using density functional theory (DFT)-based reactivity parameters and interactions via molecular docking and molecular dynamics (MD) simulations. The results indicate that the DFT-based stability descriptor (chemical hardness) is associated with the persistent nature of NBFRs. The computed molecular interaction profile revealed prominent interactions between thyroid receptor-β (TR-β) and NBFRs. Stable trajectory and interactions with TR-β were obtained with ATE, -TBX, PBT, PBEB, and TBBPA-DBPE during 100 ns of MD simulation. The results of these studies have suggested that the presence of a higher number of halogenated atoms increases the stability vis-à-vis the persistence and endocrine disruption potential of NBFRs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.3c04160DOI Listing

Publication Analysis

Top Keywords

persistent nature
8
nature nbfrs
8
nbfrs
6
computational risk
4
risk assessment
4
assessment persistence
4
persistence bioaccumulation
4
bioaccumulation toxicity
4
toxicity novel
4
novel flame-retardant
4

Similar Publications