Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: The aim of this study is to determine whether the initial stability of a cementless cup with the Mako system is superior to that of a conventional manual technique using bone models.
Methods: The bone models were prepared using a polyurethane foam block. Two hemispherical cementless cups (highly porous titanium cup [Trident II Tritanium, Stryker] and hydroxyapatite-coated titanium cup [Trident HA, Stryker]) were implanted using the Mako system. The torque of the cups was measured by rotational and lever-out torque testing and compared with that of a conventional manual technique.
Results: The two types of cups that were implanted using the Mako system demonstrated significantly higher mean rotational torque than that of the manual technique (p < 0.01, p = 0.01, respectively).
Conclusions: This study provides the advantage of the initial stability of a cementless hemispherical cup implanted by the Mako system compared with that of the conventional manual technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcs.2613 | DOI Listing |