Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Motivated by the stability of the electroweak Higgs vacuum we consider the possibility that the Standard Model might work up to large scales between about [Formula: see text] GeV and close to the Planck scale. A plausible scenario is an emergent Standard Model with gauge symmetries originating in some topological-like phase transition deep in the ultraviolet. In this case, the cosmological constant scale and neutrino masses should be of similar size, suppressed by factor of the large scale of emergence. The key physics involves a subtle interplay of Poincaré invariance, mass generation and renormalization group invariance. The Higgs mass would be environmentally selected in connection with vacuum stability. Consequences for dark matter scenarios are discussed. This article is part of the theme issue 'The particle-gravity frontier'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2023.0092 | DOI Listing |