A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comparative Analysis of Leishmania major Nucleoside Hydrolases Toward Selecting Multi-target Strategy. | LitMetric

Comparative Analysis of Leishmania major Nucleoside Hydrolases Toward Selecting Multi-target Strategy.

Acta Parasitol

Biotechnology Department, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Leishmania causes multiple types of leishmaniasis in different parts of the world. It has a lack of metabolic machine to produce purine bases. Therefore, the parasite produces purine bases through the breakdown of nutritional nucleotides and it makes the nucleoside hydrolases (NHs) good drug targets. They have different substrate-preferring (SP) types. Our objectives were modeling and comparative analysis of these protein structures for Leishmania major.

Method: In this work, available sequences for all SP types of L. major NH enzymes including inosine-uridine preferring NH (IUNH), inosine-guanosine preferring NH (IGNH), and inosine-adenosine-guanosine preferring NH (IAGNH) were used to make 24 structural models via SWISS-MODEL and LOMETS. After evaluating the structural models, three enzyme structures were finalized and used to analyze substrate-binding pockets.

Results: The three SP types of L. major NH enzymes that can breakdown purine nucleosides were highly different in terms of sequence, structure, and profile of interacting residues within the substrate-binding pockets. In this study, new enzyme structures have been presented for three SP types and they have been compared in different aspects and it indicated that they were very different from each other.

Conclusion: Although, previously indicated that from these three SP types in genera other than Leishmania, the role of IGNH and IAGNH was greater than IUNH in supplying purine bases, till this work, just IUNH has been structurally studied and used in drug-design investigations for Leishmania. Therefore, we are offering to use all three SP types of NHs as multi-target strategy in anti-leishmaniosis drug-design studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11686-023-00748-0DOI Listing

Publication Analysis

Top Keywords

three types
16
purine bases
12
comparative analysis
8
nucleoside hydrolases
8
multi-target strategy
8
types major
8
major enzymes
8
structural models
8
enzyme structures
8
types
7

Similar Publications