Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The ion/chemical-based modulation feature of organic mixed ionic-electronic conductors (OMIECs) are critical to advancing next generation bio-integrated neuromorphic hardware. Despite achievements with polymeric OMIECs in organic electrochemical neuronal synapse (OENS). However, small molecule OMIECs based OENS has not yet been realized. Here, for the first time, we demonstrate an effective materials design concept of combining n-type fused all-acceptor small molecule OMIECs with subtle side chain optimization that enables robustly and flexibly modulating versatile synaptic behavior and sensing neurotransmitter in solid or aqueous electrolyte, operating in accumulation modes. By judicious tuning the ending side chains, the linear oligoether and butyl chain derivative gNR-Bu exhibits higher recognition accuracy for a model artificial neural network (ANN) simulation, higher steady conductance states and more outstanding ambient stability, which is superior to the state-of-art n-type OMIECs based OENS. These superior artificial synapse characteristics of gNR-Bu can be attributed to its higher crystallinity with stronger ion bonding capacities. More impressively, we unprecedentedly realized n-type small-molecule OMIECs based OENS as a neuromorphic biosensor enabling to respond synaptic communication signals of dopamine even at sub-μM level in aqueous electrolyte. This work may open a new path of small-molecule ion-electron conductors for next-generation ANN and bioelectronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202315537 | DOI Listing |