Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
When long-term follow up is required for a primary endpoint in a randomized clinical trial, a valid surrogate marker can help to estimate the treatment effect and accelerate the decision process. Several model-based methods have been developed to evaluate the proportion of the treatment effect that is explained by the treatment effect on the surrogate marker. More recently, a nonparametric approach has been proposed allowing for more flexibility by avoiding the restrictive parametric model assumptions required in the model-based methods. While the model-based approaches suffer from potential mis-specification of the models, the nonparametric method fails to give desirable estimates when the sample size is small, or when the range of the data does not follow certain conditions. In this paper, we propose a Bayesian model averaging approach to estimate the proportion of treatment effect explained by the surrogate marker. Our procedure offers a compromise between the model-based approach and the nonparametric approach by introducing model flexibility via averaging over several candidate models and maintains the strength of parametric models with respect to inference. We compare our approach with previous model-based methods and the nonparametric method. Simulation studies demonstrate the advantage of our method when surrogate supports are inconsistent and sample sizes are small. We illustrate our method using data from the Diabetes Prevention Program study to examine hemoglobin A1c as a surrogate marker for fasting glucose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897582 | PMC |
http://dx.doi.org/10.1002/sim.9986 | DOI Listing |