A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Flexible evaluation of surrogate markers with Bayesian model averaging. | LitMetric

Flexible evaluation of surrogate markers with Bayesian model averaging.

Stat Med

Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, Texas, USA.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

When long-term follow up is required for a primary endpoint in a randomized clinical trial, a valid surrogate marker can help to estimate the treatment effect and accelerate the decision process. Several model-based methods have been developed to evaluate the proportion of the treatment effect that is explained by the treatment effect on the surrogate marker. More recently, a nonparametric approach has been proposed allowing for more flexibility by avoiding the restrictive parametric model assumptions required in the model-based methods. While the model-based approaches suffer from potential mis-specification of the models, the nonparametric method fails to give desirable estimates when the sample size is small, or when the range of the data does not follow certain conditions. In this paper, we propose a Bayesian model averaging approach to estimate the proportion of treatment effect explained by the surrogate marker. Our procedure offers a compromise between the model-based approach and the nonparametric approach by introducing model flexibility via averaging over several candidate models and maintains the strength of parametric models with respect to inference. We compare our approach with previous model-based methods and the nonparametric method. Simulation studies demonstrate the advantage of our method when surrogate supports are inconsistent and sample sizes are small. We illustrate our method using data from the Diabetes Prevention Program study to examine hemoglobin A1c as a surrogate marker for fasting glucose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897582PMC
http://dx.doi.org/10.1002/sim.9986DOI Listing

Publication Analysis

Top Keywords

surrogate marker
16
model-based methods
12
bayesian model
8
model averaging
8
proportion treatment
8
treatment explained
8
nonparametric approach
8
nonparametric method
8
surrogate
6
model-based
5

Similar Publications