98%
921
2 minutes
20
Appropriate regulation of the inflammatory response is essential for survival. Interleukin-10 (IL-10), a well-known anti-inflammatory cytokine, plays a major role in controlling inflammation. In addition to immune cells, we previously demonstrated that the IL-10 receptor (IL-10R1) is expressed in dorsal root ganglion sensory neurons. There is emerging evidence that these sensory neurons contribute to immunoregulation, and we hypothesized that IL-10 signaling in dorsal root ganglion (DRG) neurons facilitates the regulation of the inflammatory response. We showed that mice that lack IL-10R1 specifically on advillin-positive neurons have exaggerated blood nitric oxide levels, spinal microglia activation, and cytokine upregulation in the spinal cord, liver, and gut compared to wild-type (WT) counterparts in response to systemic lipopolysaccharide (LPS) injection. Lack of IL-10R1 in DRG and trigeminal ganglion (TG) neurons also increased circulating and DRG levels of proinflammatory C-C motif chemokine ligand 2 (CCL2). Interestingly, analysis of published scRNA-seq data revealed that Ccl2 and Il10ra are expressed by similar types of DRG neurons; nonpeptidergic P2X purinoceptor (P2X3R + ) neurons. In primary cultures of DRG neurons, we demonstrated that IL-10R1 inhibits the production of CCL2, but not that of the neuropeptides substance P and calcitonin-gene related peptide (CGRP). Furthermore, our data indicate that ablation of Transient receptor potential vanilloid (TRPV)1 + neurons does not impact the regulation of CCL2 production by IL-10. In conclusion, we showed that IL-10 binds to its receptor on sensory neurons to downregulate CCL2 and contribute to immunoregulation by reducing the attraction of immune cells by DRG neuron-derived CCL2. This is the first evidence that anti-inflammatory cytokines limit inflammation through direct binding to receptors on sensory neurons. Our data also add to the growing literature that sensory neurons have immunomodulatory functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843623 | PMC |
http://dx.doi.org/10.1016/j.bbi.2023.12.013 | DOI Listing |
PLoS Comput Biol
September 2025
Faculty of Science, Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
Predictive coding (PC) proposes that our brains work as an inference machine, generating an internal model of the world and minimizing predictions errors (i.e., differences between external sensory evidence and internal prediction signals).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia.
Purpose: To characterize corneal immune cell morphodynamics and nerve features, and define the in vivo immune landscape in older adults with human immunodeficiency virus (HIV) receiving antiretroviral therapy (ART), relative to healthy age-matched adults.
Methods: In this cross-sectional study, 16 HIV-positive individuals receiving ART and 15 age-matched controls underwent ocular surface examinations and functional in vivo confocal microscopy (Fun-IVCM). Time-lapsed videos were created to analyze corneal immune cells (T cells, dendritic cells [DCs], macrophages).
Invest Ophthalmol Vis Sci
September 2025
Center for Visual Science, University of Rochester, Rochester, NY, United States.
Purpose: Adaptive optics scanning light ophthalmoscopy (AOSLO) paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of neuronal activity in retinal ganglion cells (RGCs) at single cell resolution in the living eye. However, the inner limiting membrane (ILM) restricts viral transduction to the fovea in humans and non-human primates, hindering both therapeutic intervention and physiological study of the retina. To address this issue, we explored peeling the ILM before intravitreal injection to expand calcium imaging beyond the fovea in the living primate eye.
View Article and Find Full Text PDFBMC Ophthalmol
September 2025
Department of Ophthalmology, Institute of Medicine, Tribhuvan University, B.P Koirala Lions Centre For Ophthalmic Studies, Kathmandu, Nepal.
Background: To evaluate the ganglion cell complex thickness in patients taking oral hydroxychloroquine.
Methods: In this hospital-based, cross-sectional, non-interventional, comparative study, 87 eyes of 87 patients taking hydroxychloroquine were recruited. All the patients underwent complete ophthalmological evaluation along with dilated fundus examination.
EMBO Mol Med
September 2025
Department of Neurology, Columbia University, New York, NY, 10032, USA.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.
View Article and Find Full Text PDF