A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Methacrylated Cellulose Nanocrystals as Fillers for the Development of Photo-Cross-Linkable Cytocompatible Biosourced Formulations Targeting 3D Printing. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cellulose nanocrystals (CNCs) from cotton were functionalized in aqueous medium using methacrylic anhydride (MA) to produce methacrylated cellulose nanocrystals (mCNCs) with a degree of methacrylation (DM) up to 12.6 ± 0.50%. Dispersible as-prepared CNCs and mCNCs were then considered as reinforcing fillers for aqueous 3D-printable formulations based on methacrylated carboxymethylcellulose (mCMC). The rheological properties of such photo-cross-linkable aqueous formulations containing nonmodified CNCs or mCNCs at 0.2 or 0.5 wt% in 2 wt% mCMC were fully investigated. The influence of the presence of nanoparticles on the UV-curing kinetics and dimensions of the photo-cross-linked hydrogels was probed and C CP-MAS NMR spectroscopy was used to determine the maximum conversion ratio of methacrylates as well as the optimized time required for UV postcuring. The viscoelasticity of cross-linked hydrogels and swollen hydrogels was also studied. The addition of 0.5 wt% mCNC with a DM of 0.83 ± 0.040% to the formulation yielded faster cross-linking kinetics, better resolution, more robust cross-linked hydrogels, and more stable swollen hydrogels than pure mCMC materials. Additionally, the produced cryogels showed no cytotoxicity toward L929 fibroblasts. This biobased formulation could thus be considered for the 3D printing of hydrogels dedicated to biomedical purposes using vat polymerization techniques, such as stereolithography or digital light processing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.3c01090DOI Listing

Publication Analysis

Top Keywords

cellulose nanocrystals
12
methacrylated cellulose
8
cncs mcncs
8
cross-linked hydrogels
8
swollen hydrogels
8
hydrogels
6
nanocrystals fillers
4
fillers development
4
development photo-cross-linkable
4
photo-cross-linkable cytocompatible
4

Similar Publications