A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Alterations in Serum miR-126-3p Levels over Time: A Marker of Pituitary Insufficiency following Head Trauma. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Traumatic brain injuries (TBIs) pose a high risk of pituitary insufficiency development in patients. We have previously reported alterations in miR-126-3p levels in sera from patients with TBI-induced pituitary deficiency.

Methods: To investigate why TBI-induced pituitary deficiency develops only in some patients and to reveal the relationship between miR-126-3p with hormone axes, we used mice that were epigenetically modified with miR-126-3p at the embryonic stage. These modified mice were subjected to mild TBI (mTBI) according to the Marmarou's weight-drop model at 2 months of age. The levels of miR-126-3p were assessed at 1 and 30 days in serum after mTBI. Changes in miR-126-3p levels after mTBI of wild-type and miR-126-3p* modified mouse lines validated our human results. Additionally, hypothalamus, pituitary, and adrenal tissues were analyzed for transcripts and associated serum hormone levels.

Results: We report that miR-126-3p directly affects hypothalamus-pituitary-adrenal (HPA) axis upregulation and ACTH secretion in the acute phase after mTBI. We also demonstrated that miR-126-3p suppresses Gnrh transcripts in the hypothalamus and pituitary, but this is not reflected in serum FSH/LH levels. The increase in ACTH levels in the acute phase may indicate that upregulation of miR-126-3p at the embryonic stage has a protective effect on the HPA axis after TBI. Notably, the most prominent transcriptional response is found in the adrenals, highlighting their role in the pathophysiology of TBI.

Conclusion: Our study revealed the role of miR-126-3p in TBI and pituitary deficiency developing after TBI, and the obtained data will significantly contribute to elucidating the mechanism of pituitary deficiency development after TBI and development of new diagnostic and treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997266PMC
http://dx.doi.org/10.1159/000535748DOI Listing

Publication Analysis

Top Keywords

mir-126-3p levels
12
pituitary deficiency
12
mir-126-3p
10
pituitary
8
pituitary insufficiency
8
tbi-induced pituitary
8
mir-126-3p embryonic
8
embryonic stage
8
hypothalamus pituitary
8
hpa axis
8

Similar Publications