98%
921
2 minutes
20
Biological denitrification is the dominant method for NO removal from wastewater, while high NO leads to NO accumulation and inhibits denitrification performance. In this study, different weak magnetic carriers (0, 0.3, 0.6, 0.9 mT) were used to enhance biological denitrification at NO of 50-2400 mg/L. The effect of magnetic carriers on the removal and mechanism of denitrification of high NO was investigated. The results showed that 0.6 and 0.9 mT carriers significantly enhanced the TN removal efficiency (>99%) and reduced the accumulation of NO (by > 97%) at NO of 1200-2400 mg/L 0.6 and 0.9 mT carriers stimulated microbial electron transport by improving the abundances of coenzyme Q-cytochrome C reductase (by 4.44-23.30%) and cytochrome C (by 2.90-16.77%), which contributed to the enhanced elimination of NO and NO. 0.6 and 0.9 mT carriers increased the activities of NAR (by 3.74-37.59%) and NIR (by 5.01-8.24%). The abundance of narG genes in 0.6 and 0.9 mT was 1.47-2.35 and 1.38-1.75 times that of R1, respectively, and the abundance of nirS genes was 1.49-2.83 and 1.55-2.39 times that of R1, respectively. Denitrifying microorganisms, e.g., Halomonas, Thauera and Pseudomonas were enriched at 0.6 and 0.9 mT carriers, which benefited to the advanced denitrification performance. This study suggests that weak magnetic carriers can help to enhance the biological denitrification of high NO wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119734 | DOI Listing |
Ann Clin Transl Neurol
September 2025
Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
Objective: Neuroinflammation driven by extracellular copper contributes to neuronal damage in Wilson's disease (WD). This study investigated the relationship between brain metal burden and peripheral neuroinflammation markers in WD.
Methods: We conducted a cross-sectional study involving 89 participants, including patients with WD (n = 63), asymptomatic ATP7B heterozygous carriers (n = 12), and age/sex-matched controls (n = 14).
Background: Sphericity is a measurement of how closely an object approximates a globe. The sphericity of the blood pool of the left ventricle (LV), is an emerging measure linked to myocardial dysfunction.
Methods: Video-based deep learning models were trained for semantic segmentation (pixel labeling) in cardiac magnetic resonance imaging in 84,327 UK Biobank participants.
ACS Omega
August 2025
Laboratoire Matériaux Avancés et Phénomènes Quantiques, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, Tunis 2092, Tunisia.
This paper reports the use of P18-8, a novel conjugated polymer combining poly-(1,4-phenylene-ethynylene) and poly-(1,4-phenylene-vinylene), in the fabrication of an organic diode with the structure ITO/PEDOT:PSS/P18-8/LiF/Al. The electrical properties of the fabricated device were characterized using impedance spectroscopy across a frequency range of 100 Hz to 1 MHz at various applied voltages. The current density-voltage (-) characteristic exhibited ohmic behavior at low applied voltages, while at higher voltages, it conformed to the space charge limited current (SCLC) theory.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China.
Here, we report a multifunctional hybrid membrane-coated nanomotor for cancer chemoimmunotherapy, which consists of mesoporous silica-coated iron oxide nanoparticles (MF) as a drug carrier, loaded with doxorubicin (DOX), l-arginine (l-arg), and glucose oxidase (GOx), and camouflaged with a hybrid of red blood cell membranes (mRBC) and cancer cell membranes (CCM). RM-GDL-MF has a cascade of catalytic reactions, where glucose is catalyzed by GOx to produce HO, and l-arg is oxidized by the produced HO to release nitric oxide (NO), leading to self-propelled motion in order to promote the penetration of the extracellular matrix (ECM) in the tumor. The hybrid membrane provides not only stealth properties from mRBC to evade immune clearance but also tumor-orientation ability to target the tumor from the CCM.
View Article and Find Full Text PDFNeurology
September 2025
Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom.
Background And Objectives: Cerebrovascular reactivity (CVR) is an indicator of cerebrovascular health, and its signature in familial frontotemporal dementia (FTD) remains unknown. The primary aim was to investigate CVR in genetic FTD using an fMRI index of vascular contractility termed resting-state fluctuation amplitudes (RSFAs) and to assess whether RSFA differences are moderated by age. A secondary aim was to study the relationship between RSFA and cognition.
View Article and Find Full Text PDF