A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Experimental Study on Secondary Anchorage Bond Performance of Residual Stress after Corrosion Fracture at Ends of Prestressed Steel Strands. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In order to explore the secondary bond anchorage performance between prestressed tendons and concrete after the fracture of steel strands in post-tensioned, prestressed concrete (PPC) beams, a total of seven post-tensioned, prestressed concrete specimens with a size of 3 × 7ϕ15.2 mm were constructed firstly, and the steel strands at the anchorage end were subjected to corrosion fracture. Then, the pull-out test of the specimens was conducted to explore the secondary anchorage bond mechanism of the residual stress of prestressed tendons experiencing local fracture. Moreover, the influences of factors such as the embedded length, release-tensioning speed, concrete strength, and stirrup configuration on anchorage bond performance were analyzed. Finally, the test results were further verified via finite element analysis. The results show that the failure of pull-out specimens under different parameters can be divided into two types: bond anchorage failure induced by the entire pull-out of steel strands and material failure triggered by the rupture of steel strands. The bond anchorage failure mechanism between steel strands and the concrete was revealed by combining the failure characteristics and pull-out load-slippage relation curves. The bond strength between prestressed steel strands and concrete can be enhanced by increasing the embedded length of steel strands, elevating the concrete strength grade, and enlarging the diameter of stirrups so that the specimens are turned from bond anchorage failure into material failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10707009PMC
http://dx.doi.org/10.3390/ma16237441DOI Listing

Publication Analysis

Top Keywords

steel strands
32
bond anchorage
16
anchorage bond
12
anchorage failure
12
anchorage
8
secondary anchorage
8
bond
8
bond performance
8
residual stress
8
corrosion fracture
8

Similar Publications