Transcriptome analyses reveal key roles of alternative splicing regulation in atlantic salmon during the infectious process of Piscirickettsiosis disease.

Heliyon

Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the Chilean salmon farming industry, infection by is the primary cause of the main bacterial disease known as Piscirickettsiosis, which has an overwhelming economic impact. Although it has been demonstrated that Piscirickettsiosis modifies the expression of numerous salmonids genes, it is yet unknown how alternative splicing (AS) contributes to salmonids bacterial infection. AS, has the potential to create heterogeneity at the protein and RNA levels and has been associated as a relevant molecular mechanism in the immune response of eukaryotes to several diseases. In this study, we used RNA data to survey -induced modifications in the AS of Atlantic salmon and found that infection promoted a substantial number (158,668) of AS events. Differentially spliced genes (DSG) sensitive to Piscirickettsiosis were predominantly enriched in genes involved in RNA processing, splicing and spliceosome processes (e.g., hnRNPm, hnRPc, SRSF7, SRSF45), whereas among the DSG of resistant and susceptible to Piscirickettsiosis, several metabolic and immune processes were found, most notably associated to the regulation of GTPase, lysosome and telomere organization-maintenance. Furthermore, we found that DSG were mostly not differentially expressed (5-7 %) and were implicated in distinct biological pathways. Therefore, our results underpin AS achieving a significant regulatory performance in the response of salmonids to Piscirickettsiosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696053PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e22377DOI Listing

Publication Analysis

Top Keywords

alternative splicing
8
atlantic salmon
8
piscirickettsiosis
6
transcriptome analyses
4
analyses reveal
4
reveal key
4
key roles
4
roles alternative
4
splicing regulation
4
regulation atlantic
4

Similar Publications

During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.

View Article and Find Full Text PDF

Clusters of deep intronic RbFox motifs embedded in large assembly of splicing regulators sequences regulate alternative splicing.

PLoS Genet

September 2025

Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America.

The RbFox RNA binding proteins regulate alternative splicing of genes governing mammalian development and organ function. They bind to the RNA sequence (U)GCAUG with high affinity but also non-canonical secondary motifs in a concentration dependent manner. However, the hierarchical requirement of RbFox motifs, which are widespread in the genome, is still unclear.

View Article and Find Full Text PDF

Inhibition of cuproptosis contributes to the development of non-small cell lung cancer (NSCLC). The expression of RNA-binding motif protein 15 (RBM15) is upregulated in NSCLC. Nonetheless, its relationship with cuproptosis remains unclear.

View Article and Find Full Text PDF

Background: Prostate cancer is one of the principal malignancies threatening human health, and the development of castration resistance often constitutes a major cause of treatment failure in its management.

Methods: To elucidate the potential association between programmed death-ligand 1 (PD-L1) and castration resistance in prostate cancer, we analyzed the expression levels of PD-L1 in both primary prostate cancer tissues and castration-resistant prostate cancer (CRPC) specimens as well as in corresponding cell lines by using western blots and immunohistochemistry. Then, we explored the specific mechanisms through transcriptomic sequencing technology.

View Article and Find Full Text PDF

Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.

View Article and Find Full Text PDF