A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Transferring a Molecular Foundation Model for Polymer Property Predictions. | LitMetric

Transferring a Molecular Foundation Model for Polymer Property Predictions.

J Chem Inf Model

Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transformer-based large language models have remarkable potential to accelerate design optimization for applications such as drug development and material discovery. Self-supervised pretraining of transformer models requires large-scale data sets, which are often sparsely populated in topical areas such as polymer science. State-of-the-art approaches for polymers conduct data augmentation to generate additional samples but unavoidably incur extra computational costs. In contrast, large-scale open-source data sets are available for small molecules and provide a potential solution to data scarcity through transfer learning. In this work, we show that using transformers pretrained on small molecules and fine-tuned on polymer properties achieves comparable accuracy to those trained on augmented polymer data sets for a series of benchmark prediction tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.3c01650DOI Listing

Publication Analysis

Top Keywords

data sets
12
small molecules
8
data
5
transferring molecular
4
molecular foundation
4
foundation model
4
polymer
4
model polymer
4
polymer property
4
property predictions
4

Similar Publications