Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proteolysis-targeting chimeras (PROTACs) have recently emerged as a promising technology for drug development. However, poor water solubility, limited tissue selectivity, and inadequate tumor penetration pose significant challenges for PROTAC-based therapies in cancer treatment. Herein, we developed an iRGD-PROTAC conjugation strategy utilizing tumor-penetrating cyclic peptide iRGD (CRGDK/RGPD/EC) to deliver PROTACs deep into breast cancer tissues. As a conceptual validation study, iRGD peptides were conjugated with a bromodomain-containing protein 4 (BRD4) PROTAC through a GSH-responsive linker. The resulting iRGD-PROTAC conjugate showed enhanced water solubility, tumor-targeting capability, and penetration within tumor tissues, resulting in increased antibreast cancer efficacy in animal models and patient-derived organoids. This study demonstrates the advantages of combining iRGD and PROTACs in improving drug delivery and highlights the importance of tissue selectivity and penetration ability in PROTAC-based therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.3c01539DOI Listing

Publication Analysis

Top Keywords

proteolysis-targeting chimeras
8
conjugation strategy
8
breast cancer
8
water solubility
8
tissue selectivity
8
enhanced tumor
4
tumor targeting
4
penetration
4
targeting penetration
4
penetration proteolysis-targeting
4

Similar Publications

Proteolysis-targeting chimeras (PROTACs) have emerged as a powerful modality for selectively degrading intracellular proteins via the ubiquitin-proteasome system. However, their development is often hindered by the limited availability of high-affinity small-molecule ligands, particularly for challenging targets, such as transcription factors. Aptamers─synthetic oligonucleotides with high affinity and specificity─offer a promising alternative as target-binding modules in the PROTAC design.

View Article and Find Full Text PDF

c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.

View Article and Find Full Text PDF

Radiotherapy (RT) is a key component of comprehensive cancer treatment regimens; nevertheless, its concomitant immunosuppression may diminish therapeutic efficacy. In this study, we developed an injectable hydrogel system for the local delivery of PROteolysis TArgeting Chimeras (PROTACs), achieved by loading tumor cell membrane-fused liposome nanoparticles to enhance the anti-tumor effect. The system targeted Bromodomain-containing protein 4 (BRD4), and combined treatment with RT promoted DNA damage, reduced DNA repair and decreased tumor cell proliferation and survival.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs), including Alzheimer's, Huntington's, and Parkinson's disease, are associated with significant declines in cognitive function and mobility. The accumulation of misfolded proteins such as β-amyloid, tau, α-synuclein, and polyglutamates is a key factor in the progression of these conditions. Unfortunately, traditional small-molecule drugs face major obstacles in effectively targeting these proteins.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy (SBMA) is a CAG/polyglutamine (polyQ) repeat expansion disorder in which the mutant androgen receptor (AR) protein triggers progressive degeneration of the neuromuscular system in men. As the misfolded polyQ AR is the proximal mediator of toxicity, therapeutic efforts have focused on targeting the mutant protein, but these prior efforts have met with limited success in SBMA patients. Here, we examine the efficacy of small molecule AR proteolysis-targeting chimera (PROTAC) degraders that rapidly and potently promote AR ubiquitination and degradation by the proteasome.

View Article and Find Full Text PDF