Processing of stalled replication forks in Bacillus subtilis.

FEMS Microbiol Rev

Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804225PMC
http://dx.doi.org/10.1093/femsre/fuad065DOI Listing

Publication Analysis

Top Keywords

bacillus subtilis
8
replication stress
8
replication
5
processing stalled
4
stalled replication
4
replication forks
4
forks bacillus
4
subtilis accurate
4
dna
4
accurate dna
4

Similar Publications

The demand for previously undescribed antimicrobial agents is increasing due to the emergence of resistant plant pathogens. One of the untapped sources of new biopesticides is the plant kingdom. A bioassay-guided process comprising TLC-Bacillus subtilis bioassay, TLC-MS, and preparative flash column chromatography enabled the isolation of five previously undescribed antimicrobial labdane diterpenes (graminifolins A-E, 1-5) from the flower extract of grass-leaved goldenrod (Euthamia graminifolia, formerly Solidago graminifolia).

View Article and Find Full Text PDF

An efficient bacterial laccase-mediated system for polyurethane foam degradation.

Front Microbiol

August 2025

Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.

Polyurethane (PU), a segmented block copolymer with chemically resistant urethane linkages and tunable architecture, presents persistent biological recycling challenges. This study presents a Bacterial Laccase-Mediated System (BLMS) derived from for efficient degradation of polyester- and polyether-PU. Utilizing the laccase CotA and mediator 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the BLMS demonstrated effective de polymerization of both commercial and self-synthesized PU foams, including polyester- and polyether-types.

View Article and Find Full Text PDF

Background And Aim: Low birth weight and within-litter variations are major challenges in swine production, often exacerbated by highly prolific sow lines. Nutritional interventions such as amino acid and probiotic supplementation have shown promise, but their combined effects remain unexplored. This study aimed to evaluate the individual and interactive effects of QST 713 and L-arginine supplementation during late gestation on reproductive performance in sows.

View Article and Find Full Text PDF

Bioactive Furan Derivatives from Streptomyces sp. VITGV100: Insights from in silico Docking and ADMET Profiling.

Curr Drug Discov Technol

September 2025

School of BioSciences and Technology, Vellore Institute of Technology, VIT University, Vellore, Tamil Nadu, India.

Introduction: Streptomyces species have complex genomes, including various biosynthetic gene clusters, frequently responsible for producing antibacterial and bioactive secondary metabolites under certain environmental conditions. To assess the impact of Magnesium and Iron on Streptomyces sp. VITGV100 secondary metabolite production and bioactivity, including molecular docking studies to predict their therapeutic potential.

View Article and Find Full Text PDF

This study investigated the inhibitory effect of sucrose on the autolysis of recombinant Bacillus subtilis WB600 during keratinase production and elucidated its mechanism. Growth curves, cell morphology observations, cell wall integrity detection, and transcriptome analysis revealed that 2 % sucrose significantly increased cell biomass and delayed autolysis. Keratinase activity reached 5670.

View Article and Find Full Text PDF