98%
921
2 minutes
20
Introduction: Spinal cord injury (SCI) is characterized by serious both motor and sensory disability of the limbs below the injured segment. It is the most traumatic disorder among central nervous system (CNS) conditions which not only leads to psychological and physical harm to patients but also results in a dramatic loss in the life quality. Many efforts have been developed to find a therapeutic approach for SCI; however, an effective treatment has not yet been found. The lack of effective treatment approach and rehabilitation of SCI underscores the need to identify novel approaches. Tissue engineering associated with stem cells has been recently introduced as an effective treatment approaches for traumatic SCI. Although, low survival rates, immune rejection, cell dedifferentiation, and tumorigenicity have been addressed for tissue engineering. Regenerative medicine is an interdisciplinary field developing and applying tissue engineering, stem cell (SC) therapy, and SC-derived extracellular vesicle therapy that aims to provide reliable and safe ways to replace injured tissues and organs. The application of mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) has recently attracted attention to improve central nervous system dysfunction such as SCI, mainly by promoting neurogenesis and angiogenesis.
Methods: In this review article the latest information of SCI improvement using stem cell-derived extracellular vesicles published data in the Web of Science, Scopus, Science Direct and Pub Med databases were collected.
Results: The data collected show that MSC-EVs, including exosomes, alone or in combination with scaffolds can can regenerate the injured nerve in SCI.
Conclusion: This study summarizes the efficacy of MSC-EVs, including exosomes, alone or in combination with scaffolds in the treatment of SCI and then discusses the therapeutic outcomes observed in SCI experimental models following treatment with MSC-EVs alone or loaded on scaffolds in particular collagen-based scaffolds.
Highlights: The pathological process of SCI being very complex.A complete effective strategy has yet to be found for treatment of SCI in human.Exosomes derived-stem cells alone have great potential for the treatment of SCI.Various biocompatible scaffolds are good drug carriers for SCI treatment.Various biocompatible scaffolds are good carriers for exosomes.
Plain Language Summary: Human with spinal cord injury (SCI) show serious motor and sensory disability of the limbs. Since there is no an effective treatment for SCI, researchers are trying to develop and find a new therapeutic approach for SCI. CNS tissue engineering with various stem cells sources as well as their derived extracellular vesicle has been extensively attracted for providing reliable and safe approach for SCI treatment. Extracellular vesicles are lipid bilayer membrane-enclosed organelles containing various biomolecules involved in a variety of complex intercellular communication systems. They are released from all cell types into their surrounding environment and are important vehicles for paracrine The application of stem cells-derived extracellular vesicles (MSC-EVs) has recently attracted attention to improve central nervous system dysfunction such as SCI, mainly by promoting neurogenesis and angiogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693808 | PMC |
http://dx.doi.org/10.32598/bcn.2022.3430.2 | DOI Listing |
PLoS One
September 2025
Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.
View Article and Find Full Text PDFCancer Res
September 2025
The Wistar Institute, Philadelphia, PA, United States.
Parkin is a mitochondria-associated E3 ubiquitin (Ub) ligase that mediates mitophagy and organelle quality control. More recently, Parkin has been implicated in stimulating antitumor immunity and reprogramming the tumor immune microenvironment. Here, we showed that Parkin ubiquitinates the alarmin molecule, high mobility group box-1 (HMGB1) on Lys146 (K146) using predominantly K48 linkages.
View Article and Find Full Text PDFSud Med Ekspert
September 2025
Bureau of Forensic Medical Expertise, Saint Petersburg, Russia.
Objective: To establish organ affiliation of liver microparticles using forensic cytological method based on hepatocytes' morphological characteristics and to determine their species belonging according to the human IgG using a quantitative enzyme-linked immunosorbent assay (ELISA).
Material And Methods: Previously dried microparticles (from 0.2×0.
Dev Growth Differ
September 2025
Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.
Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Joint and Sports Medicine, Chaoyang Central Hospital, Chaoyang City, Liaoning Province, China.
Background: Osteoarthritis (OA) represents a major global health challenge with no ideal treatment options available. Early-stage treatment typically focuses on symptomatic relief of pain and stiffness; while late-stage patients can only opt for surgical interventions such as joint replacement to improve quality of life. Cell-free therapy based on extracellular vesicles (EVs) has offered a novel therapeutic approach for regulating bone metabolism and repairing cartilage, demonstrating emerging potential.
View Article and Find Full Text PDF