A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Diagnostic test accuracy of machine learning algorithms for the detection intracranial hemorrhage: a systematic review and meta-analysis study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: This systematic review and meta-analysis were conducted to objectively evaluate the evidence of machine learning (ML) in the patient diagnosis of Intracranial Hemorrhage (ICH) on computed tomography (CT) scans.

Methods: Until May 2023, systematic searches were conducted in ISI Web of Science, PubMed, Scopus, Cochrane Library, IEEE Xplore Digital Library, CINAHL, Science Direct, PROSPERO, and EMBASE for studies that evaluated the diagnostic precision of ML model-assisted ICH detection. Patients with and without ICH as the target condition who were receiving CT-Scan were eligible for the research, which used ML algorithms based on radiologists' reports as the gold reference standard. For meta-analysis, pooled sensitivities, specificities, and a summary receiver operating characteristics curve (SROC) were used.

Results: At last, after screening the title, abstract, and full paper, twenty-six retrospective and three prospective, and two retrospective/prospective studies were included. The overall (Diagnostic Test Accuracy) DTA of retrospective studies with a pooled sensitivity was 0.917 (95% CI 0.88-0.943, I = 99%). The pooled specificity was 0.945 (95% CI 0.918-0.964, I = 100%). The pooled diagnostic odds ratio (DOR) was 219.47 (95% CI 104.78-459.66, I = 100%). These results were significant for the specificity of the different network architecture models (p-value = 0.0289). However, the results for sensitivity (p-value = 0.6417) and DOR (p-value = 0.2187) were not significant. The ResNet algorithm has higher pooled specificity than other algorithms with 0.935 (95% CI 0.854-0.973, I = 93%).

Conclusion: This meta-analysis on DTA of ML algorithms for detecting ICH by assessing non-contrast CT-Scans shows the ML has an acceptable performance in diagnosing ICH. Using ResNet in ICH detection remains promising prediction was improved via training in an Architecture Learning Network (ALN).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694901PMC
http://dx.doi.org/10.1186/s12938-023-01172-1DOI Listing

Publication Analysis

Top Keywords

diagnostic test
8
test accuracy
8
machine learning
8
intracranial hemorrhage
8
systematic review
8
review meta-analysis
8
ich detection
8
pooled specificity
8
ich
6
pooled
5

Similar Publications