98%
921
2 minutes
20
Background: Traditional risk scores for recurrent atrial fibrillation (AF) following catheter ablation utilize readily available clinical and echocardiographic variables and yet have limited discriminatory capacity. Use of data from cardiac imaging and deep learning may help improve accuracy and prediction of recurrent AF after ablation.
Methods: We evaluated patients with symptomatic, drug-refractory AF undergoing catheter ablation. All patients underwent pre-ablation cardiac computed tomography (cCT). LAVi was computed using a deep-learning algorithm. In a two-step analysis, random survival forest (RSF) was used to generate prognostic models with variables of highest importance, followed by Cox proportional hazard regression analysis of the selected variables. Events of interest included early and late recurrence.
Results: Among 653 patients undergoing AF ablation, the most important factors associated with late recurrence by RSF analysis at 24 (+/-18) months follow-up included LAVi and early recurrence. In total, 5 covariates were identified as independent predictors of late recurrence: LAVi (HR per mL/m 1.01 [1.01-1.02]; < .001), early recurrence (HR 2.42 [1.90-3.09]; < .001), statin use (HR 1.38 [1.09-1.75]; = .007), beta-blocker use (HR 1.29 [1.01-1.65]; = .043), and adjunctive cavotricuspid isthmus ablation [HR 0.74 (0.57-0.96); = .02]. Survival analysis demonstrated that patients with both LAVi >66.7 mL/m and early recurrence had the highest risk of late recurrence risk compared with those with LAVi <66.7 mL/m and no early recurrence (HR 4.52 [3.36-6.08], < .001).
Conclusions: Machine learning-derived, full volumetric LAVi from cCT is the most important pre-procedural risk factor for late AF recurrence following catheter ablation. The combination of increased LAVi and early recurrence confers more than a four-fold increased risk of late recurrence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10692862 | PMC |
http://dx.doi.org/10.1002/joa3.12927 | DOI Listing |
Med Phys
September 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
Background: In catheter-based radiofrequency ablation (RFA), energy is delivered to heterogeneous thin-walled tissues to induce therapeutic heating. Variations in electrical and mechanical properties of tissue contents have a great effect on outcomes.
Purpose: The objective of this study is to develop models that replicate tissue heterogeneity and visualize ablation zones for effective evaluation and optimization.
J Cardiovasc Electrophysiol
September 2025
Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA.
Introduction: Fluoroless mapping and ablation using a Pentaspline pulsed field ablation catheter has many advantages. This can be achieved using a "tripolar configuration," which enables high-quality electroanatomical maps, improves the ability to localize electrograms (EGMs), and minimizes the use of additional mapping catheters compared to the standard bipolar configuration. We aimed to evaluate the benefits of using a tripolar configuration in fluoroless atrial fibrillation ablation compared to the standard bipolar configuration.
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
September 2025
Department of Cardiology, Stefan Cardinal Wyszynski Province Specialist Hospital, Lublin, Poland.
Introduction: Wave speed (WS) mapping, enabled by omnipolar technology, allows for real-time visualization of local conduction velocity (CV). Its utility in ventricular tachycardia (VT) ablation has not been fully characterized.
Methods And Results: We describe a case series of patients undergoing VT ablation in which WS mapping was applied alongside established techniques such as peak frequency (PF) mapping and isochronal late activation mapping (ILAM).
J Cardiovasc Electrophysiol
September 2025
Department of Internal Medicine, Division of Cardiology, American University of Beirut Medical Center, Beirut, Lebanon.
Europace
September 2025
Department of Cardiology and Vascular Medicine, University Heart and Vascular Center Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.
Background And Aims: Aim of this study was to assess the risk of hemolysis, the extent of myocardial and neural injury after monopolar, monophasic pulsed field ablation (PFA) using a lattice-tip catheter in comparison to single-shot PF ablation platforms employing bipolar, biphasic waveforms.
Methods: This prospective study included consecutive patients undergoing PFA for atrial fibrillation (AF) using the Affera™ mapping and ablation system (n=40). Biomarkers for hemolysis (haptoglobin, LDH, bilirubin), myocardial injury (high-sensitive troponin T, CK, CK-MB), neurocardiac injury (S100), and renal function (creatinine) were assessed pre- and within 24 hours post-ablation.