A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comprehensive characterization of speciated volatile organic compounds (VOCs), gas-phase and particle-phase intermediate- and semi-volatile volatility organic compounds (I/S-VOCs) from Chinese diesel trucks. | LitMetric

Comprehensive characterization of speciated volatile organic compounds (VOCs), gas-phase and particle-phase intermediate- and semi-volatile volatility organic compounds (I/S-VOCs) from Chinese diesel trucks.

Sci Total Environ

School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China; Beijing Laboratory of Environmental Fro

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We established the comprehensive emission profiles of organic compounds for typical Chinese diesel trucks. The profiles cover the entire volatility range, including speciated volatile organic compounds (VOCs), intermediate-volatility organic compounds (IVOCs), and semi-volatile organic compounds (SVOCs). The VOCs and I/SVOCs were analyzed by one-dimensional gas chromatography quadrupole mass spectrometry (GC qMS) and two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-ToF-MS) separately. The impacts of starting mode and aftertreatment technology on the VOC, gaseous and particulate I/SVOC emissions, and the gas-particle partitioning were investigated. The emission factor (EF) of gas phase I/SVOCs was approximately 10 times higher than that of particle phase I/SVOCs and the chemical compositions and volatility distributions varied greatly. VOC, IVOC, and SVOC emissions significantly decreased when vehicles were equipped with advanced aftertreatment technologies. Diesel particulate filters (DPF) can remove >71 % VOC, 74 % gaseous, and 88 % particulate I/SVOCs, many of which are significant secondary organic aerosol (SOA) precursors. The chemical compositions and volatility distributions of the gaseous I/SVOCs and unburned diesel fuel were similar, revealing that diesel fuel is the main origin of the gaseous I/SVOCs. The I/SVOC emission profiles covering the whole volatility range, i.e., logC* = -3 to 10 (C*: effective saturation concentration, μg m) were established.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168950DOI Listing

Publication Analysis

Top Keywords

organic compounds
24
speciated volatile
8
volatile organic
8
compounds vocs
8
chinese diesel
8
diesel trucks
8
emission profiles
8
volatility range
8
gas chromatography
8
mass spectrometry
8

Similar Publications