A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineered Methylococcus capsulatus Bath for efficient methane conversion to isoprene. | LitMetric

Engineered Methylococcus capsulatus Bath for efficient methane conversion to isoprene.

Bioresour Technol

Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea; Graduate Scho

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Isoprene has numerous industrial applications, including rubber polymer and potential biofuel. Microbial methane-based isoprene production could be a cost-effective and environmentally benign process, owing to a reduced carbon footprint and economical utilization of methane. In this study, Methylococcus capsulatus Bath was engineered to produce isoprene from methane by introducing the exogenous mevalonate (MVA) pathway. Overexpression of MVA pathway enzymes and isoprene synthase from Populus trichocarpa under the control of a phenol-inducible promoter substantially improved isoprene production. M. capsulatus Bath was further engineered using a CRISPR-base editor to disrupt the expression of soluble methane monooxygenase (sMMO), which oxidizes isoprene to cause toxicity. Additionally, optimization of the metabolic flux in the MVA pathway and culture conditions increased isoprene production to 228.1 mg/L, the highest known titer for methanotroph-based isoprene production. The developed methanotroph could facilitate the efficient conversion of methane to isoprene, resulting in the sustainable production of value-added chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.130098DOI Listing

Publication Analysis

Top Keywords

isoprene production
16
capsulatus bath
12
mva pathway
12
isoprene
10
methylococcus capsulatus
8
bath engineered
8
methane
5
production
5
engineered methylococcus
4
bath efficient
4

Similar Publications