Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this paper, we propose a dual-structured prior neural network model that independently restores both the amplitude and phase image using a random latent code for Fourier ptychography (FP). We demonstrate that the inherent prior information within the neural network can generate super-resolution images with a resolution that exceeds the combined numerical aperture of the FP system. This method circumvents the need for a large labeled dataset. The training process is guided by an appropriate forward physical model. We validate the effectiveness of our approach through simulations and experimental data. The results suggest that integrating image prior information with system-collected data is a potentially effective approach for improving the resolution of FP systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.508134 | DOI Listing |