A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Intraretinal microvascular alterations in indirect traumatic optic neuropathy using optical coherence tomography angiography. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To quantitatively evaluate macular and peripapillary microvascular alterations in patients with indirect traumatic optic neuropathy (TON) compared to normal controls using optical coherence tomography angiography (OCT-A) and determine their associations with other ocular parameters.

Methods: We enrolled 33 eyes of 33 patients with TON and 34 eyes of 34 healthy controls. OCT-A was used to generate microvascular structure images of the superficial retinal capillary plexus (SRCP), deep retinal capillary plexus (DRCP), and radial peripapillary capillary (RPC) segment in the macula and peripapillary area. Functional and structural parameters such as best-corrected visual acuity, visual field, peripapillary retinal nerve fibre layer (pRNFL) thickness, macular ganglion cell-inner plexiform layer (mGCIPL) thickness, OCT-A variables were compared between TON patients and controls. Age, gender, and spherical equivalent refractive errors were statistically adjusted for the analysis.

Results: OCT-A revealed a significant reduction of the average vessel density in the RPC segment in TON patients compared to controls (48.5% ± 6.28 vs. 57.88% ± 3.06%, P < 0.0001, corrected P < 0.0001). When comparing sectors, the vessel density of the RPC segment in TON patients was also significantly lower in all four quadrants compared to healthy controls. The inferior sector vessel density of the RPC segment was significantly associated with visual field defects (P = 0.0253) and visual acuity (P = 0.0369). The temporal sector vessel density of DRCP was also associated with visual field defects (P = 0.0377). The RPC segment in the superior and inferior sector vessel density displayed a significant association with the corresponding regional pRNFL thickness (P = 0.0248 and <0.0001, respectively).

Conclusions: Patients with indirect TON exhibit significant microvascular alterations compared to controls. This study confirms that TON can induce intraretinal microvascular changes and suggests that OCT-A may serve as a useful biomarker for assessing visual functional and structural changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009324PMC
http://dx.doi.org/10.1038/s41433-023-02839-8DOI Listing

Publication Analysis

Top Keywords

microvascular alterations
8
indirect traumatic
8
traumatic optic
8
optic neuropathy
8
optical coherence
8
coherence tomography
8
tomography angiography
8
retinal capillary
8
capillary plexus
8
rpc segment
8

Similar Publications