Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The stress-strength reliability (SSR) model ϕ = P(Y < X) is used in numerous disciplines like reliability engineering, quality control, medical studies, and many more to assess the strength and stresses of the systems. Here, we assume X and Y both are independent random variables of progressively first failure censored (PFFC) data following inverse Pareto distribution (IPD) as stress and strength, respectively. This article deals with the estimation of SSR from both classical and Bayesian paradigms. In the case of a classical point of view, the SSR is computed using two estimation methods: maximum product spacing (MPS) and maximum likelihood (ML) estimators. Also, derived interval estimates of SSR based on ML estimate. The Bayes estimate of SSR is computed using the Markov chain Monte Carlo (MCMC) approximation procedure with a squared error loss function (SELF) based on gamma informative priors for the Bayesian paradigm. To demonstrate the relevance of the different estimates and the censoring schemes, an extensive simulation study and two pairs of real-data applications are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688691 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287473 | PLOS |