98%
921
2 minutes
20
Photoacoustic tomography (PAT) is a non-invasive, non-ionizing hybrid imaging modality that holds great potential for various biomedical applications and the incorporation with deep learning (DL) methods has experienced notable advancements in recent times. In a typical 2D PAT setup, a single-element ultrasound detector (USD) is used to collect the PA signals by making a 360° full scan of the imaging region. The traditional backprojection (BP) algorithm has been widely used to reconstruct the PAT images from the acquired signals. Accurate determination of the scanning radius (SR) is required for proper image reconstruction. Even a slight deviation from its nominal value can lead to image distortion compromising the quality of the reconstruction. To address this challenge, two approaches have been developed and examined herein. The first framework includes a modified version of dense U-Net (DUNet) architecture. The second procedure involves a DL-based convolutional neural network (CNN) for image classification followed by a DUNet. The first protocol was trained with heterogeneous simulated images generated from three different phantoms to learn the relationship between the reconstructed and the corresponding ground truth (GT) images. In the case of the second scheme, the first stage was trained with the same heterogeneous dataset to classify the image type and the second stage was trained individually with the appropriate images. The performance of these architectures has been tested on both simulated and experimental images. The first method can sustain SR deviation up to approximately 6% for simulated images and 5% for experimental images and can accurately reproduce the GTs. The proposed DL-approach extends the limits further (approximately 7% and 8% for simulated and experimental images, respectively). Our results suggest that classification-based DL method does not need a precise assessment of SR for accurate PAT image formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659812 | PMC |
http://dx.doi.org/10.1364/BOE.501277 | DOI Listing |
Phys Eng Sci Med
September 2025
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
This study introduces a novel optimization framework for cranial three-dimensional rotational angiography (3DRA), combining the development of a brain equivalent in-house phantom with Figure of Merit (FOM) a quantitative evaluation method. The technical contribution involves the development of an in-house phantom constructed using iodine-infused epoxy and lycal resins, validated against clinical Hounsfield Units (HU). A customized head phantom was developed to simulate brain tissue and cranial vasculature for 3DRA optimization.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
HepatoBiliaryPancreatic Surgery, AOU Careggi, Department of Experimental and Clinical Medicine (DMSC), University of Florence, Florence, Italy.
Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.
Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.
J Vis
September 2025
Neuroscience Program, Western University, London, ON, Canada.
Studies of visual face processing often use flat images as proxies for real faces due to their ease of manipulation and experimental control. Although flat images capture many features of a face, they lack the rich three-dimensional (3D) structural information available when binocularly viewing real faces (e.g.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Human Structure and Repair, Ghent University Faculty of Medicine, Belgium.
Background: Staging laparoscopy (SL) is an essential procedure for peritoneal metastasis (PM) detection. Although surgeons are expected to differentiate between benign and malignant lesions intraoperatively, this task remains difficult and error-prone. The aim of this study was to develop a novel multimodal machine learning (MML) model to differentiate PM from benign lesions by integrating morphologic characteristics with intraoperative SL images.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2025
Center for Medical Metrology, National institute of metrology, Beijing, China.
Geometric changes in the sigmoid sinus diverticulum (SSD) can alter its hemodynamic - a primary factor contributing to pulsatile tinnitus (PT). However, not all SSD cases lead to clinical PT symptoms. This study aims to investigate the influence of the diameter of the diverticulum (EDD) on the hemodynamics of the sigmoid sinus in PT.
View Article and Find Full Text PDF