A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Simultaneously enhancing the resolution and signal-to-background ratio in STED optical nanoscopy via differential depletion. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

STED (stimulated emission depletion) far-field optical nanoscopy achieves resolution beyond the diffraction limit by depleting fluorescence at the periphery of excitation with a donut-shaped depletion laser. What is traded off with the superior resolution of STED nanoscopy is the unwanted elevation of structured background noise which hampers the quality of STED images. Here, we alleviate the background noise problem by adopting the differential stimulated emission depletion (diffSTED) approach. In diffSTED nanoscopy, signals obtained with different depletion strengths are compared and properly subtracted to remove two major background noise sources in STED nanoscopy. We show via simulations that by using diffSTED nanoscopy, background noise is significantly decreased, and the image contrast is improved. In addition, we show by simulation and analytical calculation that diffSTED improves resolution simultaneously. We assess the effect of different parameters, such as the STED beam intensity, depletion intensity ratio of two STED beams, and the subtraction factor, on the signal-to-background ratio (SBR) and the resolution of diffSTED nanoscopy. We introduce a logical algorithm to determine the optimal subtraction factor and the depletion intensity ratio. DiffSTED nanoscopy is a versatile technique that can be readily applied to any STED system without requiring any hardware modifications. We predict the wide applicability of diffSTED for its enhanced resolution, improved SBR, and easiness of implementation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.505430DOI Listing

Publication Analysis

Top Keywords

background noise
16
diffsted nanoscopy
16
signal-to-background ratio
8
sted
8
ratio sted
8
nanoscopy
8
optical nanoscopy
8
stimulated emission
8
emission depletion
8
sted nanoscopy
8

Similar Publications