Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intratumor heterogeneity provides the fuel for the evolution and selection of subclonal tumor cell populations. However, accurate inference of tumor subclonal architecture and reconstruction of tumor evolutionary histories from bulk DNA sequencing data remains challenging. Frequently, sequencing and alignment artifacts are not fully filtered out from cancer somatic mutations, and errors in the identification of copy number alterations or complex evolutionary events (e.g., mutation losses) affect the estimated cellular prevalence of mutations. Together, such errors propagate into the analysis of mutation clustering and phylogenetic reconstruction. In this Protocol, we present a new computational framework, CONIPHER (COrrecting Noise In PHylogenetic Evaluation and Reconstruction), that accurately infers subclonal structure and phylogenetic relationships from multisample tumor sequencing, accounting for both copy number alterations and mutation errors. CONIPHER has been used to reconstruct subclonal architecture and tumor phylogeny from multisample tumors with high-depth whole-exome sequencing from the TRACERx421 dataset, as well as matched primary-metastatic cases. CONIPHER outperforms similar methods on simulated datasets, and in particular scales to a large number of tumor samples and clones, while completing in under 1.5 h on average. CONIPHER enables automated phylogenetic analysis that can be effectively applied to large sequencing datasets generated with different technologies. CONIPHER can be run with a basic knowledge of bioinformatics and R and bash scripting languages.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41596-023-00913-9DOI Listing

Publication Analysis

Top Keywords

computational framework
8
phylogenetic reconstruction
8
subclonal architecture
8
mutations errors
8
copy number
8
number alterations
8
conipher
6
tumor
6
phylogenetic
5
sequencing
5

Similar Publications

Toward Human-Centered Artificial Intelligence for Users' Digital Well-Being: Systematic Review, Synthesis, and Future Directions.

JMIR Hum Factors

September 2025

Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.

Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.

Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.

View Article and Find Full Text PDF

The causal journey: from maps to mechanisms and digital twins.

Cereb Cortex

August 2025

Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.

Over three decades, statistical parametric mapping has transformed neuroimaging from descriptive mapping to causal inference, placing generative models at the core of causal explanations for brain function. It inspired to a large degree The Virtual Brain, which builds subject-specific digital twins from multimodal data, enabling brain simulations and exploration. Both frameworks converge at parameter estimation, where model and data meet, providing the mathematical manifestation of cause-effect in pathophysiology.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

Host defense and pathogen virulence interact and mutually shape each other's evolution. Host-pathogen co-evolutionary outcomes have potentially significant impacts on population dynamics and vice versa. To investigate host-pathogen interactions and explore the impact of micro-level co-evolutionary outcomes on macro-level epidemics, we develop a co-evolutionary model with a combined host-defense strategy.

View Article and Find Full Text PDF

A mean-field approximation-based linearization framework for network reconstruction from binary time series.

Chaos

September 2025

The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Internet, Anhui University, Hefei 230601, China.

A captivating challenge in network research is the reconstruction of complex network structures from limited binary-state time series data. Although some reconstruction approaches based on dynamical rules or sparse system of linear equations have been proposed, these approaches either rely on known dynamical rules, limiting their generality, or the system of linear equations is often empirically determined, with weak interpretability and the performance being sensitive to parameter settings. To address these limitations, we propose a network reconstruction method based on linearization grounded in mean-field approximation.

View Article and Find Full Text PDF