Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The underlying mechanisms of asbestos-related autoimmunity are poorly understood. As the size, surface reactivity, and free radical activity of asbestos particles are considered crucial regarding the health effects, this study aims to compare the effects of exposure to pristine amosite (pAmo) or milled amosite (mAmo) particles on lung damage, autoimmunity, and macrophage phenotype. Four months after lung exposure to 0.1 mg of amosite, BAL levels of lactate dehydrogenase, protein, free DNA, CCL2, TGF-β1, TIMP-1, and immunoglobulin A of pAmo-exposed C57Bl/6 mice were increased when compared to fluids from control- and mAmo-exposed mice. Effects in pAmo-exposed mice were associated with lung fibrosis and autoimmunity including anti-double-strand DNA autoantibody production. mAmo or pAmo at 20 µg/cm induced a pro-inflammatory phenotype characterized by a significant increase in TNFα and IL-6 secretion on human monocyte-derived macrophages (MDMs). mAmo and pAmo exposure induced a decrease in the efferocytosis capacities of MDMs, whereas macrophage abilities to phagocyte fluorescent beads were unchanged when compared to control MDMs. mAmo induced IL-6 secretion and reduced the percentage of MDMs expressing MHCII and CD86 markers involved in antigen and T-lymphocyte stimulation. By contrast, pAmo but not mAmo activated the NLRP3 inflammasome, as evaluated through quantification of caspase-1 activity and IL-1β secretion. Our results demonstrated that long-term exposure to pAmo may induce significant lung damage and autoimmune effects, probably through an alteration of macrophage phenotype, supporting in vivo the higher toxicity of entire amosite (pAmo) with respect to grinded amosite. However, considering their impact on efferocytosis and co-stimulation markers, mAmo effects should not be neglected. KEY MESSAGES: Lung fibrosis and autoimmunity induced by amosite particles depend on their physicochemical characteristics (size and surface) Inhalation exposure of mice to pristine amosite fibers is associated with lung fibrosis and autoimmunity Anti-dsDNA antibody is a marker of autoimmunity in mice exposed to pristine amosite fibers Activation of lung mucosa-associated lymphoid tissue, characterized by IgA production, after exposure to pristine amosite fibers Pristine and milled amosite particle exposure reduced the efferocytosis capacity of human-derived macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-023-02401-9DOI Listing

Publication Analysis

Top Keywords

pristine amosite
16
lung fibrosis
12
fibrosis autoimmunity
12
amosite fibers
12
amosite
10
lung
8
size surface
8
exposure pristine
8
amosite pamo
8
milled amosite
8

Similar Publications

The physicochemical properties of fibers critically determine asbestos pathogenicity, driving inflammation, fibrosis, and lung cancer. The prevailing paradigm in fiber toxicology posits that long and biopersistent fibers pose a greater health risk than short fibers. However, this assumption is debated due to limited studies specifically assessing the pathogenicity of short fibers.

View Article and Find Full Text PDF

Effects of different amosite preparations on macrophages, lung damages, and autoimmunity.

J Mol Med (Berl)

February 2024

Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, environnement et travail)-UMR_S 1085, 35000, Rennes, France.

Article Synopsis
  • Scientists are trying to understand how asbestos causes the body to attack itself, which is called autoimmunity.
  • They found that a type of asbestos called pristine amosite (pAmo) caused more lung damage and immune issues in mice compared to milled amosite (mAmo).
  • The study showed that pAmo can make certain cells in the immune system act differently, leading to problems like lung fibrosis and producing harmful antibodies.
View Article and Find Full Text PDF

In nanotoxicology the question arises whether high aspect ratio materials should be regarded as potentially pathogenic like asbestos, merely on the base of their biopersistence and length to diameter ratio. A higher pathogenicity of long asbestos fibers is associated to their slower clearance and frustrated phagocytosis. In the past decades, two amosite fibers were prepared and studied to confirm the role of fiber length in asbestos toxicity.

View Article and Find Full Text PDF