Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Long-read sequencing allows analyses of single nucleic-acid molecules and produces sequences in the order of tens to hundreds kilobases. Its application to whole-genome analyses allows identification of complex genomic structural-variants (SVs) with unprecedented resolution. SV identification, however, requires complex computational methods, based on either read-depth or intra- and inter-alignment signatures approaches, which are limited by size or type of SVs. Moreover, most currently available tools only detect germline variants, thus requiring separate computation of sample pairs for comparative analyses. To overcome these limits, we developed a novel tool (Germline And SOmatic structuraL varIants detectioN and gEnotyping; GASOLINE) that groups SV signatures using a sophisticated clustering procedure based on a modified reciprocal overlap criterion, and is designed to identify germline SVs, from single samples, and somatic SVs from paired test and control samples. GASOLINE is a collection of Perl, R and Fortran codes, it analyzes aligned data in BAM format and produces VCF files with statistically significant somatic SVs. Germline or somatic analysis of 30[Formula: see text] sequencing coverage experiments requires 4-5 h with 20 threads. GASOLINE outperformed currently available methods in the detection of both germline and somatic SVs in synthetic and real long-reads datasets. Notably, when applied on a pair of metastatic melanoma and matched-normal sample, GASOLINE identified five genuine somatic SVs that were missed using five different sequencing technologies and state-of-the art SV calling approaches. Thus, GASOLINE identifies germline and somatic SVs with unprecedented accuracy and resolution, outperforming currently available state-of-the-art WGS long-reads computational methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682169PMC
http://dx.doi.org/10.1038/s41598-023-48285-0DOI Listing

Publication Analysis

Top Keywords

germline somatic
20
somatic svs
20
somatic
8
somatic structural
8
structural variants
8
svs
8
svs unprecedented
8
computational methods
8
germline
7
gasoline
6

Similar Publications

Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.

View Article and Find Full Text PDF

Background: Nasopharyngeal carcinoma (NPC) pathogenesis is multi-factorial, involving synergistic interactions among genetic susceptibility, Epstein-Barr virus (EBV) infection, and environmental exposures. Notably, specific multi-generational families exhibit NPC incidence substantially exceeding both sporadic cases and general genetic susceptibility cohorts, demonstrating Mendelian inheritance patterns. This supports the hypothesis that high penetrance pathogenic variants dominate disease initiation and progression in familial NPC.

View Article and Find Full Text PDF

Chronic myeloid leukaemia (CML) accounts for 2% of leukaemias in children and 9% in adolescents. While the BCR::ABL1 fusion gene remains a hallmark across all age groups, emerging evidence suggests that paediatric CML exhibits unique biological and clinical characteristics compared to its adult counterpart. Children often present with more aggressive clinical features and show distinct treatment response patterns.

View Article and Find Full Text PDF

Background: Sézary syndrome (SS) is an aggressive and leukemic variant of Cutaneous T-cell Lymphoma (CTCL) with an incidence of 1 case per million people per year. It is characterized by a complex and heterogeneous profile of genetic alteration ns that has so far precluded the development of a specific and definitive therapeutic intervention.

Methods: Deep-RNA-sequencing (RNA-seq) data were used to analyze the single nucleotide variants (SNVs) carried by 128 putative CTCL-driver genes, previously identified as mutated in genomic studies, in longitudinal SS samples collected from 17 patients subjected to extracorporeal photopheresis (ECP) with Interferon-α.

View Article and Find Full Text PDF

is the primary high-risk predisposition gene for familial cutaneous melanoma. In the Netherlands, most carriers of pathogenic germline variants in harbor a unique, population-specific founder variant, c.225_243del, commonly referred to as p16-.

View Article and Find Full Text PDF