A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Practical Considerations for Sandwich Variance Estimation in 2-Stage Regression Settings. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we present a practical approach for computing the sandwich variance estimator in 2-stage regression model settings. As a motivating example for 2-stage regression, we consider regression calibration, a popular approach for addressing covariate measurement error. The sandwich variance approach has rarely been applied in regression calibration, despite its requiring less computation time than popular resampling approaches for variance estimation, specifically the bootstrap. This is probably because it requires specialized statistical coding. Here we first outline the steps needed to compute the sandwich variance estimator. We then develop a convenient method of computation in R for sandwich variance estimation, which leverages standard regression model outputs and existing R functions and can be applied in the case of a simple random sample or complex survey design. We use a simulation study to compare the sandwich estimator to a resampling variance approach for both settings. Finally, we further compare these 2 variance estimation approaches in data examples from the Women's Health Initiative (1993-2005) and the Hispanic Community Health Study/Study of Latinos (2008-2011). In our simulations, the sandwich variance estimator typically had good numerical performance, but simple Wald bootstrap confidence intervals were unstable or overcovered in certain settings, particularly when there was high correlation between covariates or large measurement error.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484631PMC
http://dx.doi.org/10.1093/aje/kwad234DOI Listing

Publication Analysis

Top Keywords

sandwich variance
24
variance estimation
16
2-stage regression
12
variance estimator
12
variance
9
regression model
8
regression calibration
8
measurement error
8
variance approach
8
sandwich
7

Similar Publications