A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Uncovering personal circadian responses to light through particle swarm optimization. | LitMetric

Uncovering personal circadian responses to light through particle swarm optimization.

Comput Methods Programs Biomed

Chronobiology Laboratory, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia 30100, Spain; Ciber Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid 28029, Spain.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objectives: Kronauer's oscillator model of the human central pacemaker is one of the most commonly used approaches to study the human circadian response to light. Two sources of error when applying it to a personal light exposure have been identified: (1) as a populational model, it does not consider inter-individual variability, and (2) the initial conditions needed to integrate the model are usually unknown, and thus subjectively estimated. In this work, we evaluate the ability of particle swarm optimization (PSO) algorithms to simultaneously uncover the optimal initial conditions and individual parameters of a pre-defined Kronauer's oscillator model.

Methods: A Canonical PSO, a Dynamic Multi-Swarm PSO and a novel modification of the latter, namely Hierarchical Dynamic Multi-Swarm PSO, are evaluated. Two different target models (under a regular and an irregular schedule) are defined, and the same realistic light profile is fed to them. Based on their output, a fitness function is proposed, which is minimized by the algorithms to find the optimum set of parameters and initial conditions of the model.

Results: We demonstrate that Dynamic Multi-Swarm and Hierarchical Dynamic Multi-Swarm algorithms can accurately uncover personal circadian parameters under both regular and irregular schedules, but as expected, optimization is easier under a regular schedule. Circadian parameters play the most important role in the optimization process and should be prioritized over initial conditions, although assessment of the impact of misestimating the latter is recommended. The log-log linear relationship between mean absolute error and computational cost shows that the number of particles to use is at the discretion of the user.

Conclusions: The robustness and low errors achieved by the algorithms support their further testing, validation and systematic application to empirical data under a regular or irregular schedule. Uncovering personal circadian parameters can improve the assessment of the circadian status of a person and the applicability of personalized light therapies, as well as help to discover other factors that may lie behind the interindividual variability in the circadian response to light.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2023.107933DOI Listing

Publication Analysis

Top Keywords

initial conditions
16
dynamic multi-swarm
16
personal circadian
12
regular irregular
12
circadian parameters
12
uncovering personal
8
particle swarm
8
swarm optimization
8
kronauer's oscillator
8
circadian response
8

Similar Publications