A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Intelligent Estimation of Exercise Induced Energy Expenditure Including Excess Post-Exercise Oxygen Consumption (EPOC) with Different Exercise Intensity. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The limited availability of calorimetry systems for estimating human energy expenditure (EE) while conducting exercise has prompted the development of wearable sensors utilizing readily accessible methods. We designed an energy expenditure estimation method which considers the energy consumed during the exercise, as well as the excess post-exercise oxygen consumption (EPOC) using machine learning algorithms. Thirty-two healthy adults (mean age = 28.2 years; 11 females) participated in 20 min of aerobic exercise sessions (low intensity = 40% of maximal oxygen uptake [VO2 max], high intensity = 70% of VO2 max). The physical characteristics, exercise intensity, and the heart rate data monitored from the beginning of the exercise sessions to where the participants' metabolic rate returned to an idle state were used in the EE estimation models. Our proposed estimation shows up to 0.976 correlation between estimated energy expenditure and ground truth (root mean square error: 0.624 kcal/min). In conclusion, our study introduces a highly accurate method for estimating human energy expenditure during exercise using wearable sensors and machine learning. The achieved correlation up to 0.976 with ground truth values underscores its potential for widespread use in fitness, healthcare, and sports performance monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675648PMC
http://dx.doi.org/10.3390/s23229235DOI Listing

Publication Analysis

Top Keywords

energy expenditure
20
exercise
8
excess post-exercise
8
post-exercise oxygen
8
oxygen consumption
8
consumption epoc
8
exercise intensity
8
estimating human
8
human energy
8
wearable sensors
8

Similar Publications