98%
921
2 minutes
20
Aptamer-based sensing of small molecules such as dopamine and serotonin in the brain, requires characterization of the specific aptamer sequences in solutions mimicking the environment with physiological ionic concentrations. In particular, divalent cations (Mg and Ca) present in brain fluid, have been shown to affect the conformational dynamics of aptamers upon target recognition. Thus, for biosensors that transduce aptamer structure switching as the signal response, it is critical to interrogate the influence of divalent cations on each unique aptamer sequence. Herein, we demonstrate the potential of molecular dynamics (MD) simulations to predict the behaviour of dopamine and serotonin aptamers on sensor surfaces. The simulations enable molecular-level visualization of aptamer conformational changes that, in some cases, are significantly influenced by divalent cations. The correlations of theoretical simulations with experimental findings validate the potential for MD simulations to predict aptamer-specific behaviors on biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cc04334g | DOI Listing |
J Antimicrob Chemother
September 2025
Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA.
Background: Synergy between antibiotic pairs is typically discovered using chequerboard assays that assume uniform, static drug exposure; however, such conditions rarely apply in vivo. Dynamic and heterogeneous tissue environments create spatial and temporal mismatches in drug exposure that can uncouple synergistic interactions, leading to unexpected treatment failure.
Objective: This study aims to develop a physiologically relevant in vitro model that integrates infection-site microenvironments and drug-specific pharmacokinetics.
Biosens Bioelectron
August 2025
Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, via Bitonto 139, 00133, Rome, Italy. Electronic address:
Phytic acid is a phosphorylated derivative of myo-inositol that is ubiquitous in plants and serves as the primary storage form of phosphorus. In human nutrition, phytic acid is considered an anti-nutrient because it chelates essential minerals, including calcium, iron, and zinc. This binding action reduces the bioavailability of these metals, highlighting the importance of monitoring phytic acid in food.
View Article and Find Full Text PDFFungal Biol
October 2025
Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Envir
Cadmium (Cd) contamination in edible fungi poses a significant threat to food safety. However, targeted strategies to regulate Cd uptake and enhance Cd stress tolerance in Morchella sextelata remain largely unexplored. Given that M.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Chemical Sciences, Ariel University, 70400, Israel. Electronic address:
Doubly His-tagged mCherry red fluorescent proteins are observed to form fibers and sheets at neutral pH in the presence of no more than equimolar amounts of Zn or Ni. These architectures, on the order of 10 μm in extent, are detected with scanning transmission electron microscopy imaging. Far ultraviolet circular dichroism spectroscopy attests to the preservation of the native secondary structure of mCherry, while the emission spectrum reveals the maintenance of the chemical environment of the fluorophore site.
View Article and Find Full Text PDFInorg Chem
September 2025
Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
Rare-earth ions have garnered significant attention due to their large ionic radii and unique electronic configurations. In this study, two scandium-based pyrophosphates, ASc(PO) (A = Ba, Pb), were successfully synthesized by using a high-temperature melting method. They are the first reported examples of divalent cations binding to scandium-based pyrophosphates.
View Article and Find Full Text PDF