98%
921
2 minutes
20
Background: Marine macroalgae ('seaweeds') are a diverse and globally distributed group of photosynthetic organisms that together generate considerable primary productivity, provide an array of different habitats for other organisms, and contribute many important ecosystem functions and services. As a result of continued anthropogenic stress on marine systems, many macroalgal species and habitats face an uncertain future, risking their vital contribution to global productivity and ecosystem service provision.
Scope: After briefly considering the remarkable taxonomy and ecological distribution of marine macroalgae, we review how the threats posed by a combination of anthropogenically induced stressors affect seaweed species and communities. From there we highlight five critical avenues for further research to explore (long-term monitoring, use of functional traits, focus on early ontogeny, biotic interactions and impact of marine litter on coastal vegetation).
Conclusions: Although there are considerable parallels with terrestrial vascular plant responses to the many threats posed by anthropogenic stressors, we note that the impacts of some (e.g. habitat loss) are much less keenly felt in the oceans than on land. Nevertheless, and in common with terrestrial plant communities, the impact of climate change will inevitably be the most pernicious threat to the future persistence of seaweed species, communities and service provision. While understanding macroalgal responses to simultaneous environmental stressors is inevitably a complex exercise, our attempt to highlight synergies with terrestrial systems, and provide five future research priorities to elucidate some of the important trends and mechanisms of response, may yet offer some small contribution to this goal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921835 | PMC |
http://dx.doi.org/10.1093/aob/mcad185 | DOI Listing |
Biofouling
September 2025
Research Center for Metallurgy, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia.
Biofouling poses significant ecological and operational challenges in marine environments, particularly across Indonesia's diverse tropical waters. It increases hydrodynamic drag on vessels, leading to greater fuel consumption and elevated operational costs. This review synthesizes both recent and historical studies to examine the taxonomic and functional diversity of marine biofouling organisms in Indonesian waters.
View Article and Find Full Text PDFMar Environ Res
September 2025
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:
This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.
View Article and Find Full Text PDFJ Fish Biol
September 2025
National Oceanic and Atmospheric Administration/NOS/NCCOS/MSE/Biogeography Branch, Silver Spring, Maryland, USA.
Despite snappers' (family Lutjanidae) commercial and ecological significance, knowledge gaps remain regarding life history, ontogeny and ecology across their range in the Caribbean and south Atlantic. There is also a need to explore the efficacy of marine protected areas (MPAs) as a tool for enhancing nursery and spawning habitat conservation for multiple snapper species. Additionally, even as hurricanes and sargassum inundation have become rising issues for coastal communities, there is a scarcity of data on how commercially important species respond to these environmental disturbances.
View Article and Find Full Text PDFChem Biodivers
September 2025
Research Management Unit, Centre for Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor, Malaysia.
Seaweeds are marine macroalgae that are rich in various secondary metabolites known to exhibit different biological activities such as anti-diabetic, anti-inflammatory, antioxidant, etc. This study aimed to determine the bioactive metabolites, as well as the antioxidant and anti-inflammatory activities of two red algae (Ceramium virgatum and Gracilaria corticata) and two green algae (Enteromorpha flexuosa and Ulva fasciata), which are prevalent in the coastal region of the Bay of Bengal. The total phenolic and flavonoid contents were determined using the Folin-Ciocalteu and aluminium chloride methods.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China.
Unlabelled: CO concentration mechanisms (CCMs) are important in maintaining the high efficiency of photosynthesis of marine algae. Aquatic photoautotrophs have two types of CCMs: biophysical CCMs, based on the conversion of inorganic carbon, and biochemical CCMs, based on the formation of C acid intermediates. However, the contribution of biophysical and biochemical CCMs to algal carbon fixation remains unclear.
View Article and Find Full Text PDF