98%
921
2 minutes
20
Although Qixue Shuangbu Prescription (QSP) is a classic Chinese medicine prescription for treating chronic heart failure. Low bioavailability due to the insolubility and poor biofilm permeability of the main bioactive ingredients of QSP is still a key factor limiting its efficacy. In this study, a novel self-microemulsifying drug delivery system was proposed to effectively improve the bioavailability of QSP. The qualified ultra-high-performance liquid chromatography-tandem mass spectrometry methodology was established to investigate the pharmacokinetics characteristics of the QSP self-microemulsifying drug delivery system. Our results showed that 11 components in the self-microemulsifying drug delivery system group had prolonged T and MRT values compared with QSP extract. The Cmax of calycosin-7-glucoside (CG), vanillic acid and paeoniflorin increased 2.5 times, 2.4 times and 2.3 times, respectively. The relative bioavailability values of CG, paeoniflorin and ononin were most significantly affected, increasing by 383.2%, 336.5% and 307.1%, respectively. This study promoted the development of new dosage forms of QSP and provided a useful reference for improving dosage forms to solve the problem of low bioavailability of traditional Chinese medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.202300677 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453.
Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.
View Article and Find Full Text PDFMed Oncol
September 2025
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.
View Article and Find Full Text PDFJ Cell Biol
November 2025
Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Phosphatidic acid (PA) regulates lipid homeostasis and vesicular trafficking, yet high-affinity tools to study PA in live cells are lacking. We identified the lipin-like sequence of Nir1 (PILS-Nir1) as a candidate PA biosensor based on structural analysis of Nir1's LNS2 domain. Using liposome-binding assays and pharmacological and genetic manipulations in HEK293A cells expressing fluorescent PILS-Nir1, we found that while PILS-Nir1 binds PA and PIP2in vitro, only PA is necessary and sufficient for membrane localization in cells.
View Article and Find Full Text PDFJ Cosmet Dermatol
September 2025
Department of Medicine, Yazd Branch, Islamic Azad University, Yazd, Iran.
Background: Melasma is a prevalent skin condition that primarily affects females of reproductive age. Despite the various available treatments, managing melasma is challenging due to frequent relapses and partial responses. Tranexamic acid (TXA) has gained attention as a potential treatment because of its antifibrinolytic and anti-melanogenic properties.
View Article and Find Full Text PDF