98%
921
2 minutes
20
The combination of high sensitivity and rapid readout makes it possible for electron-counting detectors to record cryogenic electron microscopy data faster and more accurately without increasing the number of electrons used for data collection. This is especially useful for MicroED of macromolecular crystals where the strength of the diffracted signal at high resolution is comparable to the surrounding background. The ability to decrease fluence also alleviates concerns about radiation damage which limits the information that can be recovered from a diffraction measurement. The major concern with electron-counting direct detectors lies at the low end of the resolution spectrum: their limited linear range makes strong low-resolution reflections susceptible to coincidence loss and careful data collection is required to avoid compromising data quality. Nevertheless, these cameras are increasingly deployed in cryo-EM facilities, and several have been successfully used for MicroED. Provided coincidence loss can be minimized, electron-counting detectors bring high potential rewards.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756876 | PMC |
http://dx.doi.org/10.1016/j.str.2023.10.011 | DOI Listing |
Microscopy (Oxf)
May 2025
School of Physics, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland.
As interest in fast real-space frame-rate scanning transmission electron microscopy for both structural and functional characterisation of materials increases, so does the need for precise and fast electron detection techniques. Electron counting, with monolithic, segmented, or 4D detectors, has been explored for many years. Recent studies have shown that a retrofittable signal digitiser for a monolithic or segmented detector can be a sustainable and accessible way to enhance the performance of existing detectors, especially for imaging at fast scan speeds.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
March 2025
Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
Electron counting helped realize the resolution revolution in single-particle cryoEM and is now accelerating the determination of MicroED structures. Its advantages are best demonstrated by new direct electron detectors capable of fast (kilohertz) event-based electron counting (EBEC). This strategy minimizes the inaccuracies introduced by coincidence loss (CL) and promises rapid determination of accurate structures.
View Article and Find Full Text PDFIUCrJ
March 2025
Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles, 611 Charles E. Young Dr East, Los Angeles, CA 90095, USA.
High-energy electrons induce sample damage and motion at the nanoscale to fundamentally limit the determination of molecular structures by electron diffraction. Using a fast event-based electron counting (EBEC) detector, we characterize beam-induced, dynamic, molecular crystal lattice reorientations (BIRs). These changes are sufficiently large to bring reciprocal lattice points entirely in or out of intersection with the sphere of reflection, occur as early events in the decay of diffracted signal due to radiolytic damage, and coincide with beam-induced migrations of crystal bend contours within the same fluence regime and at the same illuminated location on a crystal.
View Article and Find Full Text PDFMicrosc Microanal
November 2024
National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
bioRxiv
August 2024
Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095.
High resolution information is important for accurate structure modelling. However, this level of detail is typically difficult to attain in macromolecular crystallography because the diffracted intensities rapidly fade with increasing resolution. The problem cannot be circumvented by increasing the fluence as this leads to detrimental radiation damage.
View Article and Find Full Text PDF