A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Relating mutational signature exposures to clinical data in cancers via signeR 2.0. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Cancer is a collection of diseases caused by the deregulation of cell processes, which is triggered by somatic mutations. The search for patterns in somatic mutations, known as mutational signatures, is a growing field of study that has already become a useful tool in oncology. Several algorithms have been proposed to perform one or both the following two tasks: (1) de novo estimation of signatures and their exposures, (2) estimation of the exposures of each one of a set of pre-defined signatures.

Results: Our group developed signeR, a Bayesian approach to both of these tasks. Here we present a new version of the software, signeR 2.0, which extends the possibilities of previous analyses to explore the relation of signature exposures to other data of clinical relevance. signeR 2.0 includes a user-friendly interface developed using the R-Shiny framework and improvements in performance. This version allows the analysis of submitted data or public TCGA data, which is embedded in the package for easy access.

Conclusion: signeR 2.0 is a valuable tool to generate and explore exposure data, both from de novo or fitting analyses and is an open-source R package available through the Bioconductor project at ( https://doi.org/10.18129/B9.bioc.signeR ).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664385PMC
http://dx.doi.org/10.1186/s12859-023-05550-3DOI Listing

Publication Analysis

Top Keywords

signature exposures
8
somatic mutations
8
data
5
signer
5
relating mutational
4
mutational signature
4
exposures
4
exposures clinical
4
clinical data
4
data cancers
4

Similar Publications