A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Drug combinations screening using a Bayesian ranking approach based on dose-response models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose-response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank-based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4-parameter log-logistic (4PLL) model was used to estimate dose-response curves of dose-candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose-response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bimj.202200332DOI Listing

Publication Analysis

Top Keywords

drug combinations
12
combinations based
8
combinations
6
drug
4
combinations screening
4
screening bayesian
4
ranking
4
bayesian ranking
4
ranking approach
4
approach based
4

Similar Publications