Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson's disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658151PMC
http://dx.doi.org/10.1038/s41467-023-43224-zDOI Listing

Publication Analysis

Top Keywords

cd11c cells
16
brain ileum
12
mouse model
8
parkinson's disease
8
brain gut
8
αsyn trafficking
8
trafficking brain
8
cells
5
brain
5
αsyn
5

Similar Publications

During disease, there may be increased local demands for zinc (Zn) and vitamin A to support pathogen response. This study evaluates the effects of intranasal Zn and vitamin A treatments on steers experimentally infected with bovine respiratory disease (BRD) pathogens, bovine respiratory syncytial virus (BRSV) and , hypothesizing that steers treated with Zn and vitamin A (VA) will have improved recovery to BRD challenge. Forty-eight Angus crossbred steers (333 ± 4.

View Article and Find Full Text PDF

The causal relationship between immune cell signatures and multiple myeloma (MM) pathobiology remains incompletely understood. This study aimed to explore the bidirectional causal associations between 731 circulating immune cell traits and MM risk using a two-sample, bidirectional Mendelian randomization (MR) approach. Two-sample MR analyses were conducted utilizing genome-wide association study (GWAS) summary statistics for 731 immune cell phenotypes and MM GWAS datasets.

View Article and Find Full Text PDF

CD19CD11cT-bet B cells in myasthenia gravis: a potential biomarker.

Front Neurol

August 2025

Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.

Background: Myasthenia gravis (MG), an autoimmune disorder characterized by B cell-driven autoantibody production, exhibits heterogeneous B cell subsets dysregulation and incompletely defined signaling mechanisms.

Methods: A cohort of 20 naïve MG patients positive for anti-acetylcholine receptor (AChR) antibodies and 15 healthy controls was analyzed. Peripheral blood mononuclear cells underwent proteomic profiling, flow cytometry (age-associated B cells (ABCs), plasma cells, T follicular helper cells, and regulatory B cells), and western blot validation of nuclear factor kappa-B (NF-κB)/cellular reticuloendotheliosis oncogene homolog (c-Rel) expression.

View Article and Find Full Text PDF

Regulatory dendritic cells and their usefulness in mitigating solid organ transplant rejection.

Clin Transplant Res

September 2025

Department of Preventive Oncology, Dr. B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.

Dendritic cells (DCs) are highly efficient antigen-presenting cells located throughout body tissues and surfaces. Initial studies described these cells as potent activators of naïve T lymphocytes; however, subsequent research has demonstrated that DCs can also regulate T cell activation, survival, and effector functions. DCs possessing T cell regulatory properties, known as regulatory DCs (regDCs), are phenotypically immature cells with modified functionality.

View Article and Find Full Text PDF

Obesity is a known risk factor for diseases of the pancreas, including diabetes, pancreatic cancer and pancreatitis, but mechanisms remain unclear. To elucidate how obesity impacts pancreatic immune homeostasis, we performed spatial, transcriptomic and functional profiling of human pancreatic immune cells from obese and non-obese organ donors. Obesity was associated with higher density of tissue resident memory T-cells (TRM) in the exocrine pancreas which display high cytotoxic functions and aggregated around macrophages.

View Article and Find Full Text PDF