Electrokinetic Effect of a Two-Liquid Interface within a Slit Microchannel.

Langmuir

Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents an investigation of the electrokinetic effect at a two-liquid (immiscible liquid-aqueous solution) interface within a slit microchannel using a three-dimensional (3D) numerical model, with a particular focus on the impact of the surface ζ-potential and liquid phase height on the interface electrokinetic velocity. The findings indicate that the direction of the interface movement depends on the ζ-potentials at the two-liquid interface and the microchannel wall. When the absolute value of the negative ζ-potential at the interface is smaller than that at the wall, the interface moves toward the negative pole of the applied direct current (DC) electric field; conversely, it moves in the opposite direction. The velocity of interface motion decreases as the height of the aqueous phase and the dynamic viscosity ratio between the immiscible liquid and the aqueous solution increase. Conversely, the velocity increases with an elevation in the height of the immiscible liquid phase and the DC electric field intensity. This study holds significant importance in elucidating the patterns of change in fluid interface electrokinetic effects and their potential applications in manipulating and separating particulate pollutants within water systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c02890DOI Listing

Publication Analysis

Top Keywords

interface
9
electrokinetic two-liquid
8
two-liquid interface
8
interface slit
8
slit microchannel
8
liquid phase
8
interface electrokinetic
8
electric field
8
immiscible liquid
8
electrokinetic
4

Similar Publications

Giant mobility of surface-trapped ionic charges following liquid tribocharging.

Proc Natl Acad Sci U S A

September 2025

Soft Matter Sciences and Engineering, CNRS, École supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Paris 75005, France.

The sliding motion of aqueous droplets on hydrophobic surfaces leads to charge separation at the trailing edge, with implications from triple-line friction to hydrovoltaic energy generation. Charges deposited on the solid surface have been attributed to ions or electrons ripped off from the liquid drop. However, the dynamics and exact physicochemical nature of these surface-trapped charges remains poorly explored.

View Article and Find Full Text PDF

Understanding the intricate relationship between land use/land cover (LULC) transformations and land surface temperature (LST) is critical for sustainable urban planning. This study investigates the spatiotemporal dynamics of LULC and LST across Delhi, India, using thermal data from Landsat 7 (2001), Landsat 5 (2011) and Landsat 8 (2021) resampled to 30-m spatial resolution, during the peak summer month of May. The study aims to target three significant aspects: (i) to analyse and present LULC-LST dynamics across Delhi, (ii) to evaluate the implications of LST effects at the district level and (iii) to predict seasonal LST trends in 2041 for North Delhi district using the seasonal auto-regressive integrated moving average (SARIMA) time series model.

View Article and Find Full Text PDF

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF

Proto-SLIPS: Slippery Liquid-Infused Surfaces that Release Highly Water-Soluble Agents.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.

Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.

View Article and Find Full Text PDF