98%
921
2 minutes
20
The idea that the increased ubiquity of digital devices negatively impacts neurodevelopment is as compelling as it is disturbing. This study investigated this concern by systematically evaluating how different profiles of screen-based engagement related to functional brain organization in late childhood. We studied participants from a large and representative sample of young people participating in the first two years of the ABCD study (ages 9-12 years) to investigate the relations between self-reported use of various digital screen media activity (SMA) and functional brain organization. A series of generalized additive mixed models evaluated how these relationships related to functional outcomes associated with health and cognition. Of principal interest were two hypotheses: First, that functional brain organization (assessed through resting state functional connectivity MRI; rs-fcMRI) is related to digital screen engagement; and second, that children with higher rates of engagement will have functional brain organization profiles related to maladaptive functioning. Results did not support either of these predictions for SMA. Further, exploratory analyses predicting how screen media activity impacted neural trajectories showed no significant impact of SMA on neural maturation over a two-year period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2023.09.009 | DOI Listing |
JAMA Neurol
September 2025
Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.
Importance: Exposure to fine particulate matter air pollution (PM2.5) may increase risk for dementia. It is unknown whether this association is mediated by dementia-related neuropathologic change found at autopsy.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.
View Article and Find Full Text PDFArch Pharm Res
September 2025
College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.
c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Acute or chronic liver damage can result in Hepatic Encephalopathy (HE), a potentially fatal neuropsychiatric condition that leads to cerebral and neurological alterations. Dapagliflozin (DAPA), an orally active Sodium/Glucose cotransporter 2 inhibitor with long duration of action. The study aim was to evaluate the potential protective impact of DAPA against HE caused by Thioacetamide (TAA) in rats.
View Article and Find Full Text PDFNeurochem Res
September 2025
International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
The concept of the central nervous system (CNS) reserve emerged from the mismatch often observed between the extent of brain pathology and its clinical manifestations. The cognitive reserve reflects an "active" capacity, driven by the plasticity of CNS cellular components and shaped by experience, learning, and memory processes that increase resilience. We propose that neuroglial cells are central to defining this resilience and cognitive reserve.
View Article and Find Full Text PDF