98%
921
2 minutes
20
The tryptophan zipper (Trpzip) is an iconic folding motif of β-hairpin peptides capitalizing on two pairs of cross-strand tryptophans, each stabilized by an aromatic-aromatic stacking in an edge-to-face (EF) geometry. Yet, the origins and the contribution of this EF packing to the unique Trpzip stability remain poorly understood. To address this question of structure-stability relationship, a library of Trpzip hairpins was developed by incorporating readily accessible nonproteinogenic tryptophans of varying electron densities. We found that each EF geometry was, in fact, stabilized by an intricate combination of XH/π interactions. By tuning the π-electron density of Trp rings, CH/π interactions are strengthened to gain additional stability. On the contrary, our DFT calculations support the notion that Trp modulations are challenging due to their simultaneous paradoxical engagement as H-bond donors in CH/π and acceptors in NH/π interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736618 | PMC |
http://dx.doi.org/10.1021/acschembio.3c00553 | DOI Listing |